
Securing the
Oracle Database
A technical primer

Fourth edition

Table of contents

Foreword 03

About the authors 04

Acknowledgements 06

01. Protecting data 07

02. Database authentication and authorization 13

03. Enforcing separation of duties 26

04. Data encryption and key management 35

05. Discovering sensitive data 45

06. Masking sensitive data 58

07. Database auditing and activity monitoring 71

08. Network-based SQL monitoring 83

09. Data-driven application authorization 93

10. Need for security assessment 103

11. EU GDPR and database security 115

12. Securing databases in the cloud 124

13. Keeping data safe 133

Conclusion: Putting it all together 144

For further reading 146

| 2Securing the Oracle Database

Foreword
Having been in the security space for over 25 years, the front seat view has been exhilarating. Twenty-five years
ago, mostly governments and financial institutions were interested in security while everybody else trusted the
administrators, users, and computing environment to keep their data secure. It was only when browsers opened
up new vistas for commerce over the net in the 90s, companies began to understand the strong need for security.
This new perspective led to SSL, network firewalls, and strong cryptography.

Fast forward to the present and, just like before, we find ourselves living in a dramatically different world where
every piece of data is online and available 24/7. To address this new reality, we see many different security
technologies protecting various layers of the IT stack all the way from the applications down to the chipsets.
While the global security spend is expected to exceed $130 billion in 2020, hacks are becoming bigger and
bolder, and impacting everything from customer and citizen databases to vaccine data and Wi-Fi routers.

Hackers have built sophisticated tools along with a thriving underground market to go after everything we have,
whether on mobile devices, laptops, file servers, or databases. For most hackers, the target of choice is not a laptop
or a spreadsheet–the target is most often a database with its hundreds of millions of records. The hackers may try
to break-in through attacks on the network, operating system, database, and applications. They also–many would
even say primarily–target the users who have legitimate access to those systems. Sometimes it’s insiders, with
deep knowledge of data and defenses, who attack the systems for nefarious gains.

Why are organizations so vulnerable to attacks? Many might say that they don’t know where their sensitive data
is, where they are vulnerable, and what the fixes might be. They might also fear that the fixes may break their
applications, or that the insiders may exploit the trust placed in them. Too many stop at securing the perimeter, not
recognizing how easily hackers can bypass the network perimeter, get to the databases, and quietly walk away with
their data. It is not surprising that on average, it takes the victims six months to even know that they have been
breached, and it also isn’t surprising that they typically learn about the breach from customers or law enforcement.

Many information technology, database, and security leaders now realize that securing databases should be one
of their most important goals. After all, in most companies it is their databases that contain most of the sensitive
data assets. They also acknowledge that while they would never be able to block every path hackers might take,
protecting databases serves their constituents well since every path eventually leads to one.

During the last twenty years, I’ve seen a significant shift in how hackers go after databases. In response, Oracle has
built multiple security technologies for securing data at the source–within the database. We have focused on all
pillars of security: evaluating the risk posture, preventing the attacks, and detecting/alerting malicious behavior.
Industry analysts and security professionals recognize that the Oracle Database provides industry’s
most comprehensive security.

This book, authored by my Database Security Product Management team, explains in simple terms the adversaries
of today, how they exploit the weaknesses, and how they get access to your sensitive data. This book is not meant
to be a prescriptive cookbook, or a manual, but rather a quick study into what every Database or Security Director/
VP should know about the security of Oracle databases. You will learn about multiple assessment, preventive, and
detective security controls for databases so that you can provide high-level guidance to your teams on how to
shrink the attack surface and keep your databases secure.

Breaches are coming faster than we can imagine, and it is crucial that we are prepared! Your data is your asset, but
unless you protect it well, it could fall into wrong hands, and become a liability. Let’s start by securing the source!

Vipin Samar
Senior Vice President, Oracle Database Security Development
January 2021

| 3Securing the Oracle Database

About the authors
Alan Williams is the Product Manager responsible for authentication and authorization technologies in the
Oracle Database group. Prior to joining the Oracle Database Security team, he was involved in government and
military projects involving high-security architecture, design and processes along with ITIL implementation.
Alan is a 30-year veteran of the IT industry and has certifications in ITIL v3 Foundation and DOD Architecture
Foundation and is a United States Air Force veteran. He earned his Bachelor’s degree from the Massachusetts
Institute of Technology and Masters of Business Administration from the Rensselaer Polytechnic Institute.

Angeline Janet Dhanarani is a Product Manager for Oracle Database Security, focusing on auditing and
activity monitoring. With close to 16 years of experience in Oracle spanning multiple products, she now helps
Oracle customers adopt comprehensive database security strategies and closely works with the engineering
team to define the product roadmap for auditing and activity monitoring.

Ashok Swaminathan is a Senior Director of Product Management with overall responsibilities for the auditing
and activity monitoring area in the Oracle Database Security team. He has over 20 years of experience in the
enterprise software market covering inbound and outbound product management. Prior to Oracle, he worked
at SAP/Sybase, where he led PM activities for SAP HANA machine learning, Sybase ASE database, Database
Auditing and other products. Ashok has an MBA from The Wharton School, M.S in Computer Engineering from
Univ. of Massachusetts, Amherst and a Bachelor’s degree in Electrical Engineering from Indian Institute of
Technology, Madras.

Bettina Schäumer is a Senior Principal Product Manager for Oracle Database Security, responsible for Oracle
Data Safe. She has over 20 years of experience in product and solution management, go-to-market strategies,
sales operations, sales enablement, program management and consulting for major software companies.
Prior to joining Oracle, Bettina worked at SAP with global responsibilities for end-to-end scenarios and key
capabilities within the SAP HANA platform. Throughout her career, she covered a variety of solutions in
enterprise software, business networks, business analytics, internet of things, technology and database
systems. Bettina has a German degree in Computer Science.

Manish Choudhary is a Product Manager for Oracle Database Security focused on sensitive data discovery
and masking technologies. Prior to joining the Oracle Database Security team, he worked with the Oracle
Solaris group as a product manager and a security engineer. While with McAfee Labs, he worked on Host
Intrusion Prevention System and Database Activity Monitoring. His interest areas are data security and privacy,
cryptography, cloud security, and machine learning in security. Manish has an MS in Security from Georgia
Institute of Technology.

Michael Mesaros is Director of Product Management for Oracle Database Security and has over 20 years of
experience in a variety of security areas. He is a 16 year veteran of Oracle, where he has managed products
for collaboration, networking, directory services, and identity management. In his career, Michael has also
managed a wide variety of security products, including those for network behavior analytics, physical security
information management, data masking, and firewall systems. Michael attended the University of Michigan
in Ann Arbor where he received a BSE in Electrical Engineering, a BS in Cellular and Molecular Biology, and an
MBA from the Ross School of Business. He also has a Master’s Degree in Electrical Engineering from San Diego
State University.

| 4Securing the Oracle Database

Pedro Lopes is a Product Manager in the Oracle Database Security group. He covers Europe, Middle East, and
Africa (EMEA), and Latin America regions for all Database Security features and products and manages the
Security Assessment technologies (DBSAT, Data Safe). He played numerous roles from Consulting to Presales
during the last 20 years at Oracle. Pedro is helping customers to adopt Oracle Data Safe and to understand
how Oracle Database Security solutions may help address EU GDPR and other regulatory requirements. Pedro’s
certifications include CISSP, ITIL v3 Foundation, and International Project Management Association
Level D (IPMA).

Peter Wahl is the Product Manager for Oracle Transparent Data Encryption and Oracle Key Vault. Between 2004
and 2015 he helped introduce Transparent Data Encryption and wrote security articles/tools to migrate data to
encrypted tablespaces without downtime or data loss. Peter has also been a member of Oracle sales consulting
organization, working with some of the largest Oracle Database customers in the US and Canada. Peter is a
certified Oracle Cloud Infrastructure Architect Associate and holds a Master’s Degree in Electrical Engineering
from the University of Applied Sciences in Ravensburg.

Russ Lowenthal is a Senior Director of Outbound Product Management for Database Security helping
Global 1000 customers understand how to mitigate the risks with their databases using Maximum Security
Architecture. Leveraging more than thirty years of experience in IT including database, UNIX systems, and
network administration, he advises Oracle’s customers on database security strategy and implementations.
Russ’ certifications include CISSP, Certified Information Systems Auditor (CISA), Certified Information Systems
Manager (CISM), Oracle Certified Master (OCM), Microsoft Certified Systems Engineer (MCSE) and Certified
Technical Trainer (CTT).

| 5Securing the Oracle Database

Acknowledgements

The authors wish to gratefully acknowledge Michelle Malcher, Paul Needham, Scott Rotondo, George Csaba,
and Saikat Saha who contributed towards the first three editions of this Oracle Database Security primer.

The following individuals helped with the review and provided invaluable feedback: Rich Evans, Sean Cahill,
Chi Ching Chui, Marek Dulko, William Howard-Jones, Chao Liang, Rahil Mir, Gopal Mulagund, Abhishek
Munnolimath, Vikram Pesati and Rajesh Tammana.

The authors would like to especially thank Vipin Samar, Senior Vice President, Oracle Database Security,
for helping and guiding them during the preparation and review of this manuscript.

 | 6Securing the Oracle Database

Protecting
data01

| 7

Organizations worldwide are experiencing the impact of data breaches at an unprecedented rate. It seems like
every day brings a news story about a service provider losing subscribers’ personal information, an employer
losing employee HR records, or a government contractor losing sensitive intellectual property. Data is the new
currency, and bad actors are often able to leverage stolen data for financial or political advantage for years after
a breach has occurred.

Data is the new currency

Figure 1.1: Categories of sensitive data

And where do organizations keep their sensitive data? At the end of the day, this data is stored and managed
in databases. At one point, perimeter security solutions such as network firewalls were considered sufficient
for protecting internal systems and repositories such as databases from data theft.

However, the threat environment for organizations has changed considerably in recent years. Tools vary
widely depending upon the attackers, from exploiting unpatched systems to very advanced methods where
hackers penetrate a network, search for vulnerabilities, and then covertly exfiltrate data from servers. These
attacks can go undetected for weeks, months, or even years.

The need to protect data has never been greater. In addition to the monetary and reputational losses arising
from data breaches, organizations today operate in an increasingly stringent and fast-evolving regulatory
landscape. The United States alone has more than 20 national privacy and data security laws, with additional
laws enacted at the state level. The European Union (EU) has harmonized data privacy laws across multiple
member states with the General Data Protection Regulation (EU GDPR).

Under this regulation, data breaches can lead to fines of up to four percent of a company’s global annual
turnover or €20 million, whichever is greater. The EU GDPR not only applies to organizations located within
the European Union, but also organizations located outside of the European Union if they provide goods
or services to EU residents, a fact that illustrates how new regulations are cutting across industries and
geographies. Similar regulations are now cropping up across the world including comprehensive data
privacy laws in Japan, Australia, New Zealand, India, South Korea, Chile, and Brazil.

 | 8Securing the Oracle Database

To understand why a defense-in-depth approach to database security is important, it is necessary to
understand the various actors who want your data and how they try to get it.

Threat actors can be broadly divided into two groups: “outsiders” and “insiders.” Outsiders vary widely in their
level of skill and resources. They include everyone from lone “hacktivists” and cyber criminals seeking business
disruption or financial gain, to criminal groups and nation state-sponsored organizations seeking to perpetrate
fraud and create disruption at a national scale. Insiders include current or former employees, curiosity seekers,
and customers or partners who take advantage of their position of trust to steal data. The target for both of
these groups includes personal data, financial data, trade secrets and regulated data.

Threat actors

Figure 1.2: Threat actors

Nation states

Criminals

Hacktivists

Former employees

Curiosity seekers

Customers

Insiders

Competitors

Personal
data

Financial
data

Regulated
data

Trade
secrets

With a modern multi-tier application, threat actors have many approaches they can try in their quest for
data including:

• Stealing the credentials of a privileged administrator or application user through email-based phishing
and other forms of social engineering, or by using malware to sniff for credentials and data.

• Exploiting weaknesses in applications with techniques such as SQL injection, bypassing application layer
security by embedding SQL code into a seemingly innocuous end-user provided input.

• Escalating run-time privileges by exploiting vulnerable applications.

• Accessing database system files that are unencrypted on the disk.

• Stealing archive tapes and media containing database backups.

• Copying live data from development and test systems where the data is typically not as well protected
as in the production systems.

• Viewing sensitive data through applications that inadvertently expose sensitive data that exceeds what
users should require to complete their tasks.

• Exploiting unpatched systems or misconfigured databases to bypass access controls.

• Stealing the keys and demanding ransom.

| 9Securing the Oracle Database

A well-structured data security solution must provide multiple controls to mitigate these various threat
vectors and more. The best approach is a built-in framework of security controls which can be deployed
easily to apply appropriate levels of security. Here are some of the more commonly used controls for
securing database deployments:

• Assessment controls help assess the security posture of a database, including the ability to monitor and
identify configuration changes. They also help you assess how much sensitive data you may have in the
database, and where it resides.

• Preventive controls block access to data by unauthorized users with technologies such as encryption,
redaction, masking, or database system-level controls.

• Detective controls monitor user and application data access, allowing administrators to detect and block
threats and support compliance reporting.

• Data controls enforce application-level access within the database, providing a consistent authorization
model across multiple applications, reporting tools, and database clients.

• User controls enforce proper user authentication and authorization policies ensuring that only
authenticated and authorized users have access to their data.

Many organizations today are migrating their workloads to the cloud and embracing new, agile deployment
models. While cloud deployments can provide a higher degree of infrastructure security, they also change trust
boundaries and can expose data to new threats. As a result, data security controls need to scale and
work seamlessly across on-premises, private cloud, public cloud and hybrid cloud environments.

Rings of security control

Figure 1.3: How threat actors exploit databases

Administrators

A�ack
users

Exploit
application

Sni�
tra�c

Exploit
database

Bypass
database

A�ack
data copies

A�ack
admins

End users

Test Dev Partners

Applications

| 10Securing the Oracle Database

Figure 1.4: Rings of security controls for Oracle Database

Data discovery

Config assessment

User assessment

Privilege Analysis

Activity auditing

Reporting/alerting

Audit vault

Database Firewall

Network encryption

Data encryption

Key management

Data masking

Data redaction

Database Vault

Crypto toolkit

Row security

Label security

Real app security

Password

PKI, Kerberos

Roles, Privileges

Oracle Directory

Active directory

Assess Detect

Users

Prevent

Data

This book takes you through the various aspects of Oracle’s defense-in-depth security for databases and
provides a high-level overview of how they work and the types of protection they provide. The following
chapters cover different aspects of database security.

Chapter 2 : Database authentication and authorization provides an overview of how users are authenticated
and managed in the database, along with how roles and privileges are used to control access to data in the
Oracle Database.

Chapter 3: Enforcing separation of duties describes how to protect databases from a variety of inside and
outside threats, and how Oracle Database Vault enforces this by limiting access to data by privileged users.

Chapter 4: Data encryption and key management shows how Oracle encrypts both data at rest and data in
motion, and provides scalable key management.

Roadmap to defense in-depth

| 11Securing the Oracle Database

Chapter 5: Discovering sensitive data explains why understanding sensitive data, and its location, are critical
to protecting your data. It briefly covers various Oracle technologies that enable you to automatically discover,
classify and analyze sensitive data.

Chapter 6: Masking sensitive data discusses how to limit exposure to sensitive data in production systems
as well as non-production environments such as development and analytics. It explains how data masking and
subsetting technologies can help you minimize risk and maximize value of your data.

Chapter 7: Database auditing and activity monitoring explains the need for tracking activities for all key
database users using the audit capabilities built into the database. It describes how Oracle provides a scalable
audit management and reporting solution for databases and operating systems.

Chapter 8: Network-based SQL monitoring explains why organizations need to defend their production
databases from SQL based attacks using database firewalls. It describes how Oracle provides a comprehensive
solution for monitoring and protecting Oracle and non-Oracle databases.

Chapter 9: Data-driven application authorization shows how developers can leverage a range of
authorization mechanisms attached to the data right within the database ensuring strong consistent access
controls for application data.

Chapter 10: Need for security assessment discusses why it is important to know the security profile of your
users, data, and configuration before hackers do. It describes various Oracle tools to evaluate and monitor
database configuration for potential security issues.

Chapter 11: EU GDPR and database security describes how Oracle Database Security can help address
requirements related to EU GDPR and other emerging data privacy regulations.

Chapter 12: Securing databases in the cloud discusses differences between on-premises and cloud security,
as well as how you can apply the controls discussed earlier to databases in the cloud.

Chapter 13: Keeping data safe describes Oracle Data Safe, which combines a number of the most essential
security controls into a single, unified cloud-based service. With Oracle Data Safe, organizations can perform
security and user assessments, identify sensitive data, mask data for test, development and analytics, and
collect and manage their database audit information.

Finally, we conclude by bringing all of these technologies together to show how they can be applied to provide
an appropriate level of defense-in-depth security according to an organization’s risk management and
compliance requirements.

| 12Securing the Oracle Database

Database
authentication
and authorization

02

| 13

All access to the database is through database user accounts, whether these are administrative users,
application accounts, or regular users. Oracle supports different flavors of database users, each with
different access rights to the database including:

• Regular database users: They are typically restricted to their schema containing their tables, views,
indexes, and stored procedures. If hackers hack into their accounts, they would not only be able to
view/update data within the user schema, but also access objects in other schemas that the user
may be authorized to access.

• Application accounts: These are the database accounts used for running your applications, both
commercial and homegrown. These accounts are similar to your regular database user accounts, but
as applications need to run 24/7, their passwords are often stored on multiple middle tier servers. Any
compromise in these database accounts can lead to loss of data for the entire application including data
about the end-users.

• Application administrators: These accounts are used to manage, patch, and upgrade your application,
and hence have full access to all the data and the stored procedures used for the application.

• Data analysts or business intelligence users: These users typically get unfettered read-access to the
application schema without going through the application level access controls.

• Database administrators (DBAs): They are responsible for a wide variety of tasks for the database
including performance management, diagnostics and tuning, upgrade and patching, database startup
and shutdown, and database backup. Their highly privileged database access also gives them access to any
sensitive data contained within the database (personal, health, corporate finance records, etc.) even though
that access is not required to perform DBA tasks. DBAs essentially hold the keys to your data kingdom, and
hence are typically fully trusted within their organizations. Unfortunately, this makes them hackers’
prime target.

• Security administrators: Many organizations have specialized DBAs perform the responsibilities of
security administrators, including user account management, encryption key management, and
audit management.

Hackers may target any or all of them depending upon the data they are after. Targeting DBAs gives them
the broadest access to data within the database.

A fundamental step in securing a database system is validating the identity of the users accessing the
database (authentication) and controlling what operations they can perform (authorization).

This chapter discusses how a strong authentication and authorization strategy helps protect the users of
databases from attackers. It also explains how to manage the user accounts whether the accounts are
managed locally within the database or with centralized corporate directory services.

Flavors of database users

 | 14Securing the Oracle Database

The easiest way to hack into the database is to impersonate an authorized user on that database. Some of the
common techniques include:

• Apply social engineering to capture account credentials : With targeted phishing attacks, hackers can
target end users or DBAs in an organization (which are easy to find via social media channels such as
LinkedIn), and steal their credentials.

• Try passwords used on other compromised sites: Many users use the same password across multiple
applications or multiple web sites, and if any of them get compromised, attackers can try those passwords
to attack your database.

• Find hardcoded database connection information: Applications or users frequently connect to a database
using embedded database usernames and passwords or store these credentials in a clear text configuration
file. Compromising these accounts allows hackers to exfiltrate, modify, or delete any data that the account
can access.

• Use default or published passwords: Hackers can try common default passwords to connect as the user
and use their privileges to access sensitive data.

• Run brute force password attacks: By trying various combinations of known passwords and their
variations, hackers can break into database accounts with weak passwords when there are no limits
on password retries. Without enforcement of complex passwords, some users may use easy to guess
passwords such as ‘password’ and ‘Oracle123’.

These attacks are not necessarily sophisticated, and can be executed by “script kiddies”, but they give hackers
at least as much access as that particular user, and then some more. We will address most of these potential
attacks later in this chapter.

Users : Your weakest link

| 15Securing the Oracle Database

Oracle supports different means of authentication including passwords stored locally within the database or in
centralized directory services. Users can also be authenticated by the operating system, or by various external
authentication services including Kerberos, public key certificates, and RADIUS.

Passwords are used for one-way authentication of the user to the database, while Kerberos and public key
certificates support mutual authentication, ensuring the user is indeed connecting to the proper database.
While passwords are convenient to use, it is easier to compromise a user’s password compared to their Kerberos
or PKI credentials. We will describe later how to increase the security associated with passwords through
stronger password profiles.

Once the user is authenticated, the user is then mapped to a schema on the database consisting of tables,
views, indexes, and procedures, and then granted appropriate authorization through roles and privileges.
When authenticating users with a directory service, users either get their own database schema (exclusive
mapping) or get mapped to a shared schema (shared mapping).

The following table lists the database authentication methods and associated mappings to schemas and roles.

Database authentication methods

Table 2.1: Database user authentication and authorization methods

Authentication method Schema mapping Role mapping

Password Schema is the same as user Managed in database

OS User mapped to a schema Managed in the database or through OS groups

Kerberos User mapped to a schema Managed in database

Public key (PKI) User mapped to a schema Managed in database

RADIUS User mapped to a schema Managed in the database or through RADIUS server

Oracle directory services Managed in database and

directory service

Managed in database and directory service

Active Directory Managed in database and

directory service

Managed in database and directory service

| 16Securing the Oracle Database

With password authentication, users are expected to remember and use strong, long and complex passwords,
and enter them when needed. Different passwords are supposed to be used for different databases and the
sharing of database passwords is prohibited. However, both administrators and regular users are attracted to
convenience and shortcuts, and hackers are ready to exploit such human behavior. We provide mechanisms
(described below) that puts constraints on such behavior.

Problem: Storing plain text passwords

With password-based authentication, users provide a password when they connect to the database, but
applications, middle-tier systems, and batch jobs cannot depend on a human to type the password. In the past,
a common but insecure way to provide passwords was to embed user names and passwords in the code or
scripts. However, this increased the attack surface against the database and people had to make sure the scripts
were not exposed. Also, if passwords were ever changed, changes to the scripts were required.

Oracle Wallets were introduced to solve this problem by storing various authentication credentials including
passwords, private keys, and certificates in an encrypted file form. With wallets, the users need to remember
only the wallet password, which then unlocks all remaining user credentials for multiple databases. Applications
and database servers can also use the auto-login form of the wallet for 24/7 access to credentials.

With wallets, the database passwords are no longer exposed on command-line history or in clear text
configuration files. Further, application code does not have to be changed whenever user names or passwords
change. Wallets are also used for storing the primary key for Transparent Data Encryption. More on this in
Chapter 4.

To configure use of the password stored in an Oracle Wallet, set the WALLET_LOCATION parameter in the
client’s sqlnet.ora file. Applications and users can then connect to the database without directly providing login
credentials on the command line or hiding them in a configuration file.

Problem: Sharing accounts and passwords

Application administrators often need to connect to an application schema for maintenance. If there are
multiple application administrators, they all typically share the same application username and password.
If there are multiple DBAs, they also sometimes share passwords. Sharing passwords can be convenient but
provides no accountability and makes it difficult to audit and investigate issues.

Proxy authentication can be used to hold individual administrators accountable. When authorized for proxy
authentication to the application account, administrators first authenticate to the database with their own
credentials, and then proxy to the application schema without having to know the password for the application
schema account. For example, alice_appdba connects using her own password and then later assumes the
identity and privileges of the hrapp schema by proxy as follows:

Making users resistant to attacks

SQL> CONNECT alice_appdba[hrapp]

Enter password: <alice_appdba_password>

| 17Securing the Oracle Database

The audit records now show hrapp as the DBUSERNAME while the alice_appdba user is recorded as the
DBPROXY_USERNAME. The proxy username is also available for policy-driven access control mechanisms like
Database Vault, Label Security, Redaction and Real Application Security (discussed later in this book).

Problem: Poor password hygiene

Sometimes users use very weak and short passwords, making it easy for somebody to guess the passwords
and break-in.

User profiles can be used to create a common policy of password and resource authorization parameters for
user accounts. Each user account can be associated with a selected user profile to simplify management of
common policies across an organization.

If no policy is specified when the user is created, the default policy is assigned. The sample policy below
(org_profile) incorporates both password and resource authorization parameters.

The ora12c_stig_verify_function imposes several password requirements that correspond with the
United States Department of Defense Security Technical Implementation Guide (STIG) including a minimum
length, minimum number of alphanumeric characters and that at least one special character is used (among
other requirements).

Each user should have an associated profile to ensure that a common baseline security policy is uniformly
applied. Changes to the security policy can easily be done by changing a single policy instead of changing
every user account.

Problem: Downtime when changing application account passwords

The database accounts for applications need to update their passwords periodically to comply with corporate
policies or follow security best practices guidelines. Changing an application account password requires the
password to be changed in the database and also with the application (hopefully stored in a client wallet). To
eliminate the chance that the application would fail when it tries to login during a password change, most
organizations have to schedule downtime for their applications. Some organizations even forego password
updates to minimize application downtime.

CONNECT_TIME 90

SESSIONS_PER_USER 2

IDLE_TIME 30

FAILED_LOGIN_ATTEMPTS 6

PASSWORD_LIFE_TIME 180

PASSWORD_VERIFY_FUNCTION ora12c_stig_verify_function;

SQL> CREATE PROFILE org_profile LIMIT

-- Limit connection time to 90 min

-- Allow two sessions for each user

-- Automatic logout after 30 min idle

-- Lock the account after 6 attempts

-- Force password change after 180 days

-- STIG password complexity rules

| 18Securing the Oracle Database

Starting with Oracle Database 21c, users can create a new password for an application while still allowing
other application clients to use the old password for a limited period. With gradual password rollover, the new
password can be updated with all application clients or mid-tiers without having to schedule downtime or risk
an adverse application event.

Problem: Managing multiple accounts and passwords

If users have accounts on multiple databases, they tend to keep the same password for convenience.
However, they then have to update the password on every database when any single database requires a
password update. Further, when an employee leaves the organization, the administrators need to remove the
user account from all the databases. However, in practice those accounts live for a very long time making them
a very attractive target for hackers.

Using global users with either Oracle Enterprise User Security (EUS) or Oracle Centrally Managed Users (CMU),
the administrators can centrally manage users and roles across multiple databases within the organization’s
directory services. This also means users need to change their passwords only once in accordance to the
password policy of the directory. More on this later in this chapter.

| 19Securing the Oracle Database

Once a user is authenticated, the database needs to decide what this user can do. In general, the user is
permitted to connect to their own schema and access, modify, or delete all the objects in their own schema.
Through privileges and roles, user can get permission to perform a specific operation, such as updating an
object in some other schema, or certain database-specific right. Such rights can be granted to subjects which
may include individual users, roles, or programs acting on behalf of users.

Privileges

A database privilege grants the ability to perform certain operations on data objects or execute statements.
There are three types of privileges–object, system, and administrative.

• Object privileges are fine-grained privileges to perform actions on specific database objects or execute
specific procedures. Examples include privileges to read data from a table (SELECT or READ), execute a
PL/SQL statement (EXECUTE), and alter table structure (ALTER).

• System privileges are typically used by database administrators for application or database maintenance.
System privileges like SELECT ANY TABLE allow the user to read data from almost any table in the database
including sensitive data stored in application schemas. CREATE USER is another example of a system
privilege allowing new users to be created in the database.

• Administrative privileges are used for specific tasks like database backup, encryption key management,
and database operations (e.g., startup, shutdown).

Certain maintenance activities like database upgrade and patching can only be done by the SYS account
(Database owner). The administrative privilege SYSDBA allows a user to become SYS for these tasks. The SYS
account and the related SYSDBA administrative privilege should only be used when absolutely necessary and be
safeguarded. Any such use should also be fully audited.

Roles

Roles are nothing but privileges grouped together, making it easier to grant or revoke them from multiple
users. Direct object and system privileges can be grouped into task-based roles. Roles can also be hierarchically
grouped under other roles. This allows privileges to be grouped together in a task role and multiple task roles to
be grouped together for an organizational role.

Database authorization

| 20Securing the Oracle Database

Application admin

Organization
role

Task
role

Privileges

SecurityAnalyst

Application
admin

Procedures

Select
table

Alter
any table

Execute any
procedure

Object
Access

Security

Manage
pro�les

Create
user

Alter
user

Create
pro�le

Alter
pro�le

Manage
users

Analyst

Create
table

Select
on HR

Alter
on Fin

Create
table
on HR

Create
table

on Fin

Select
data

Figure 2.1: Sample role and privilege hierarchy

Table 2.2: Data dictionary views for roles and privileges

One of the most critical components of an Oracle Database is its data dictionary, which is a set of tables and
views that provides information about the database, including definitions (metadata) about all objects and
users in the database. The dictionary views listed below show the roles and privileges granted to users or roles.

If one were to analyze the information in these tables, they would see that the out-of-the-box Oracle DBA role
is extremely powerful with more than two hundred system privileges (depending on which database options
were installed) including ALTER SESSION; CREATE, ALTER and DROP USER; CREATE and ALTER ANY TABLE;
SELECT, INSERT, UPDATE, and DELETE ANY TABLE; EXPORT and IMPORT FULL DATABASE, and over
eighty roles.

Who can do what in your database

Dictionary views Contents

DBA_TAB_PRIVS Object privilege grants to roles or users

DBA_SYS_PRIVS System privilege grants to roles or users

DBA_ROLE_PRIVS Role grants to users or other roles

DBA_ROLES All defined roles

Multiple users can be granted the same role to simplify privilege management for users. Using privileges
and roles in this fashion makes it easy to add a new person to an organization. They would be granted the
role for the position instead of having to discover all the privileges needed and granting them one by one. As
organizations change and tasks move from one group to another, the task roles can be simply moved instead
of managing individual privileges or having to redefine all the organizational level roles. Roles simplify the
management of user privileges when there is an organizational change.

| 21Securing the Oracle Database

In an enterprise with many users accessing a number of databases, users have difficulty in keeping every
password compliant with each database’s policy and remembering different passwords for their various
accounts. Further, it is difficult for administrators to manage unique accounts for each user in every database as
each user needs to be provisioned separately along with their passwords. More importantly, each account needs
to be de-provisioned when the user changes role and/or leaves the organization. Hackers often exploit such
dead/orphan accounts to gain unauthorized access to data.

Oracle Enterprise User Security (EUS) centrally manages users and roles across multiple databases in one of
the Oracle directory services, which optionally can integrate with other corporate directories. After successfully
authenticating the user, the database refers to the directory for authorization (roles) information. Database
users managed through the directory service are called enterprise users as they span multiple databases
across the enterprise. Such enterprise users can be assigned enterprise roles or groups that determine access
privileges across multiple databases. An enterprise role maps to one or more roles on individual databases.

Introduced in Oracle Database 18c, Centrally Managed Users (CMU) directly integrates the database with
Microsoft Active Directory to manage user authentication and authorization. Active Directory users can have
their own schema (exclusive mapping) or they can share a schema through Active Directory groups. Active
Directory groups can also map directly to database roles.

Managing users centrally

Figure 2.2: Centrally Managed Users (CMU)

Exclusive DB schema

Shared DB schema

Administrative user

Password, Kerberos, PKI
authentication

Database Active Directory

User management
Group assignments

Account policy

Map

Map

DB global user

DB global role

AD user
AD group

AD group

The Oracle DBA role shouldn’t be modified and, in most cases, should not be used by the customer. Instead
of using the default DBA role, each organization should create one or more custom DBA roles (i.e., ops_dba,
backup_dba) that have the roles and privileges required for that job function.

| 22Securing the Oracle Database

Protecting regular users

One cannot expect regular database users to remember and voluntarily follow all the security guidelines
regarding their password strength, password management hygiene, and the roles/privileges granted to them.
These security guidelines need to be enforced at the database level to make sure users follow them. Policies
such as the following help minimize your users from being hacked:

• Impose a strong password profile for all of the users controlling the password strength, the inactivity period,
and the number of passwords retries.

• Implement strong authentication mechanisms with PKI or Kerberos.

• Use Oracle Wallets instead of writing down the password somewhere.

• Manage users centrally using directories to reduce the probability of orphan accounts when the employees
leave the organization or change their roles.

• Create users with shared schemas if they do not need their own schema for their objects.

• Regularly examine if users have been granted additional fine-grained privileges to objects outside of their
schema. Implement Privilege Analysis to ensure that users only have the privileges that they really need for
the job. More on this in later chapters.

Protecting DBA accounts

Database Administrator (DBA) accounts typically have wide access within the database—usually much more
access than is actually needed just to administer the database. This access should be controlled using the
following best practices:

• Database administrators should use named accounts with strong authentication to provide accountability.
Use of shared accounts, or default accounts like SYSTEM should be prohibited; instead, they should use
proxy authentication and/or strong authentication mechanisms such as PKI and Kerberos.

• Tailor privileges for individual tasks and responsibilities to reduce the attack surface associated with these
accounts instead of granting the DBA role. If extra privileges and roles are needed for troubleshooting,
revoke them after the task is done.

• Block access to user schemas or SQL commands using Database Vault. More on this in later chapters.

• Fully audit all DBA activities for accountability and tracking.

• Use a Privileged Account Management (PAM) system when operating system accounts for root and
database owner are needed for SYSDBA access during upgrade.

Protecting your users from getting hacked

Both EUS and CMU allow users and administrators to be authenticated using passwords, Kerberos and
certificates. Kerberos is becoming more commonly used when using centralized directory services for human
users while passwords and certificates are used for application accounts.

| 23Securing the Oracle Database

Protecting application accounts

Application DBA and application service accounts in the database not only have all the roles and privileges
required to run the application on behalf of every application user, but for the sake of convenience, they may
also have roles and privileges to perform application installation, upgrades, patching, and other maintenance
activities. Such accounts need to be well protected using the following best practices:

• Use strong authentication mechanisms (PKI, Kerberos) to authenticate to the database.

• Use Oracle Wallets to store credential information.

• Use gradual password rollover to periodically rotate the application password in the database.

• Use proxy authentication instead of sharing passwords across multiple administrators.

• To minimize direct login access for the application schema, create a schema-only account for the
application objects and procedures, and then use a separate run-time application service account to access
the application objects through controlled procedures and views. The schema-only account feature was
introduced in Oracle Database 18c, where accounts have a named schema but with no password or other
ability to login. Starting with Oracle Database 19c, almost all Oracle accounts installed with the database are
schema-only accounts to prevent login to these privileged accounts. In the past, these accounts would have
passwords that would need to be periodically rotated. Other users can still be granted read/write access to
these schemas.

• Revoke the privileges for application upgrade, patching, and other maintenance activities from the
application runtime account, and instead create a separate administrator user who is separately audited and
managed. Without this separation, a hacker who has compromised an application user account can use SQL
injection attacks to not only take over the application, but also change the stored procedures and
delete tables.

• Grant application DBAs access to only the application schema objects, and not database-wide privileges
even though this may be convenient.

• Fully audit all of their activities for accountability and tracking.

Protecting security administrator accounts

Security administrators manage security controls, encryption keys, database users and audit records. They
ensure the security of the database along with ensuring that there are user constraints on tablespaces, idle
time, and number of concurrent sessions to prevent impact on other users. Such accounts need to follow
these best practices:

• Use strong authentication mechanisms (PKI, Kerberos) to authenticate to the database.

• Enforce proper separation of duty between database administrators/users and security administrators to
prevent DBA/user accounts from being able to alter security records, create fake users and change
security controls.

• Limit roles granted to the security administrators such they don’t have wide access to the sensitive data in
the database in addition to managing the security controls.

• All of their activities should be fully audited for accountability and tracking.

| 24Securing the Oracle Database

As most attacks target the authorized users of the database, properly managing users and their authorization
is the first step in protecting the database. Oracle provides many options for user authentication to meet
customer requirements with central or local management of users. Fine-grained access controls using privileges
and task-oriented roles give a great level of control that is easy to manage.

Oracle Data Safe includes a User Assessment feature to analyze both cloud and on-premises database user risk.
User Assessment identifies users with DBA privileges in each database to quickly identify user accounts that
can pose a risk if account credentials are compromised.

Upcoming chapters will show how tools can help identify areas of concern more quickly. For example, Database
Security Assessment Tool (DBSAT) scans databases and provides information about user account configuration
and privilege grants. Finding the right set of privileges and roles can be done easily using Privilege Analysis.

Proper use of privileges and roles to limit user access, combined with strong authentication, sets the foundation
for a secure database.

Summary

 | 25Securing the Oracle Database

Enforcing separation
of duties03

| 26

Cybersecurity and regulatory concerns are driving strong security controls for insiders and privileged
(administrative) users. Privileged users usually have powerful system privileges which give them unrestricted
access to the database so they can easily manage the database 24/7 whether it is for performance
management, diagnostics and tuning, upgrade and patching, database startup and shutdown, or database
backup. However, this also gives them full access to all the sensitive data in the database such as salary, social
security numbers, company financial forecasts and intellectual property. While most organizations trust their
DBAs and power users, someone attempting to break into the system can—and frequently does—target
privileged user accounts so that they can get full access to all the data.

This chapter introduces best practices such as the least privilege model and separation of duties for controlling
access by privileged users’ accounts. It discusses how Oracle Database Vault prevents privileged users from
abusing their system privileges to access sensitive data and also to prevent accidental or malicious changes to
the database. It continues with how Privilege Analysis helps implement the least privilege model.

Controlling privileged users

DBAs essentially hold the keys to your data kingdom, and hence are typically fully trusted within their
organizations. Unfortunately, this makes them prime targets of the hackers. Organizations also have a
responsibility to protect their sensitive data from unauthorized access. A balance must be created between
the thinking that DBAs need full access and the need to protect sensitive data.

An example of a powerful system privilege is the SELECT ANY TABLE privilege granted to DBAs. With
this, the DBA can view almost any data on the database including salary, social security, phone numbers,
corporate financial forecasts, intellectual property and other sensitive data. If a cyber-criminal is successful in
compromising the credentials of a DBA, they get access to the sensitive data. They can now easily export this
data into a file and exfiltrate it.

We can strike a balance between the need for privileged users to do their jobs and the need to protect sensitive
data through implementing the following:

• Separation of Duties (SoD): Here the administration tasks are divided among multiple users instead of a
single powerful individual with full access to all database administration, operations and security controls.
Dividing overall duties into separate administrative, operations and security duties make it less likely
for privileged users to abuse their privileges as any single administrator will only have a portion of the
privileges. Further, there is no reason for all these users to have access to the application schemas.

• Trusted path: In the likelihood that administrator credentials get compromised, access to the database
should be allowed only if it follows a trusted path which can include IP address, time of day, authentication
type, etc. Adding additional checks reduces the probability that an attack using compromised credentials
succeeds.

• Least privilege: The users should be granted only the minimum set of privileges needed to accomplish
their intended tasks or functions, and no more. When granting privileges to a user or role, it is preferable
to grant specific object privileges that are needed rather than broad system privileges that allow access to
all objects in the database. Similarly, it is better to create roles that contain the least number of privileges

Controlling powerful administrators

 | 27Securing the Oracle Database

necessary for a particular function instead of using powerful roles like the built-in DBA role. Granting several
of these task specific roles to a user allows for a close match to the tasks that the user needs to perform
without granting extra privileges. The least privilege model helps reduce the attack surface for the
database by limiting what the attacker could do even if the credentials for the privileged account were
somehow compromised.

• Named users: It is not uncommon to see administrators share database accounts for convenience.
However, this removes accountability and increases risk as many people have access to the same account.
Every DBA should have an individual named account with appropriately tailored privileges and roles.

• Controlling Database owner account: The SYSDBA administrative privilege provides full access to the
SYS (Database owner) account. Use of this privilege and account should be limited to database upgrades
and patching. Change management and privileged access management (PAM) systems should be used to
control access to this privilege.

• Activity audit: Audit records provide an irrefutable record of actions on database, directory, or operating
system. Information such as privileged user actions that were taken (CREATE USER, CREATE ANY TABLE,
ALTER SYSTEM, ALTER SESSION) coupled with the context of the event such as the initiating IP address,
event time, and actual SQL statement, are just a few examples of audit information needed in compliance
and forensic reports. Further, if audit records can be created when the administrative users access
application accounts, alerts can be raised for further action. (More information about audit can be found
in Chapter 7).

These security principles are well known but difficult to enforce without tools such as Oracle Database Vault
and Privilege Analysis.

Oracle Database Vault enforces separation of duties, prevents access to sensitive data regardless of system
privileges through realms, and provides SQL command rules to prevent accidental or malicious execution of
SQL commands. Trusted path rule sets enforce the context for authorized users to access realms and to execute
SQL commands.

Privilege Analysis—a powerful analysis mechanism—dynamically determines privileges and roles that were
used, and were not used for a given user. This helps in implementing least privileged named users and
applications to reduce damage in case of a breach.

Oracle Database Vault and Privilege Analysis work together to make it easier for administrators to follow
and enforce good security practices for their database.

| 28Securing the Oracle Database

By force of habit, administrators find it easy to use the super powerful SYSDBA privilege or DBA role to perform
critical database operations such as startup/shutdown, backup, managing Data Guard, etc. Not only are you
increasing your dependence on this all-powerful privilege or role, you are also increasing the probability of a
mistake or a breach.

Many of these DBA operations can be done using narrow and very specific privileges. For example, the
SYSOPER administrative privilege allows an administrator to perform limited tasks such as starting and
stopping the database without having the full range of powers conferred by the SYSDBA privilege. Oracle
Database 12c adds additional administrative privileges called SYSBACKUP, SYSDG, SYSKM and SYSRAC to
enable database backups, Data Guard administration, key management, and RAC management, respectively.
Each of these administrative privileges is associated with an operating system group (e.g.: DBA). Depending on
one’s organizational structure, one may assign all these administrative privileges to the same group (default) or
assign each privilege to its own unique OS group.

With these specific privileges, multiple administrators can perform all the normal operations to manage
a database without the risk of having the all-powerful SYSDBA privilege. This still does not prevent the
administrators from accessing user specific data. Read on to see how to further enforce SoD.

Limiting risk exposure with separation of duties

Normally, only the schema owner and users with direct object grants are allowed to access their sensitive
data. However, privileged users also have access to the sensitive data through the SELECT ANY TABLE system
privilege. Complex applications with multiple schemas also frequently use system privileges instead of object
privileges for convenience, making it possible for SQL injection attacks to access data all across the database.

What one needs is a set of operational controls within the database to enforce limits on privileged users from
accessing sensitive schemas, tables and views.

Oracle Database Vault, first introduced in Oracle Database 9i, restricts privileged users or DBAs with system
privileges such as SELECT ANY TABLE from accessing sensitive data. It introduces the concept of realm, which
is essentially a list of schemas or specific sensitive objects that only the object owner and those with direct
object grants can access. Thus Database administrators can manage the database, but cannot access sensitive
schemas/objects protected by realms.

The following illustration shows an example of a realm protecting sensitive data within the human resources
(HR) schema. Oracle Database Vault prevents the powerful DBA from accessing data inside the HR realm, yet
still allows them do their DBA tasks.

Controlling privileged users with Oracle Database Vault

| 29Securing the Oracle Database

HR realm

Backup,
performance

troubleshooting

HR objects

HR DBA

There are however other situations where you don’t even want the owner or even somebody with the direct
object grant to have access to the data. Thus, by default, nobody is allowed access until they are specifically
granted access and only if they are granted access by the security team for SoD purposes. They are also useful
during patching and upgrades when an administrator needs to make changes during an application upgrade.
During some application upgrades, only the application procedures and functions need to be modified—not the
tables and views that hold the sensitive data. In this case, stronger protection can be put around the sensitive
tables and views and still allow access to update the procedures.

To implement the above use cases, Oracle Database Vault supports “mandatory realms” that block even the
object owner or other users with direct object privileges from accessing the protected data. The only way
to access such protected data is to be authorized to the mandatory realm. In this example, the application
administrator is granted access to the regular Oracle Database Vault realm protecting the entire schema for
the upgrade, but a mandatory realm is put around the sensitive data tables to prevent the administrator from
accessing the sensitive data. This is safer than temporarily dropping all protection to the sensitive data objects
or authorizing access to all the sensitive objects.

Figure 3.2: Mandatory realms in Database Vault

The only user that can grant access to the data is the security officer, not the owner of the data. This
simplifies identifying which users have access since the auditors don’t need to traverse a potentially complex
chain of direct object grants to different users and roles. All object authorizations are maintained as realm
authorizations, managed by a security officer.

Figure 3.1: Oracle Database Vault uses realms to protect the sensitive data

No data access

Update procedures

Database
Vault realm

Salary, SSN

Mandatory
 realm

| 30Securing the Oracle Database

When Oracle Database Vault is configured, additional roles are created for separation of duties including
account management and Oracle Database Vault management.

• Oracle Database Vault account manager role provides out of the box enforced SoD for a security role to
create and manage users in the database along with their password profiles.

• Oracle Database Vault owner role is the only role that allows a security DBA to create, modify and manage
Oracle Database Vault security controls including the ability to manage realms and add realm participants.

The DBA role under Oracle Database Vault does not have the ability to manage users or manage Oracle
Database Vault controls out of the box. This prevents a common attack vector where a malicious actor steals the
credentials of a DBA and then uses this legitimate account to create a rogue user account and grant powerful
privileges to this account, enabling the user to steal sensitive data. This leaves the original compromised DBA
account available for future malicious acts.

A separate role to manage the Oracle Database Vault security controls ensures separation between operational
DBAs and the security staff. This prevents either the DBA or security DBA from disabling security controls and
stealing sensitive data using a single account. Since these account management and Oracle Database Vault
security control tasks are controlled by roles, organizations can enable Oracle Database Vault and implement
separation of duties over time by initially granting these roles to existing DBAs.

Common DBA tasks such as performance tuning, memory management, backup, and others can still be done
by the DBA team (infrastructure or application DBAs). Certain DBA tasks which may expose the DBA to sensitive
data like export and jobs scheduling will require an additional authorization step by the security team.

Enforcing separation of duties with Oracle Database Vault

Figure 3.3: Database Vault separation of duties

Database Vault
owner

Database Vault
account manager

Database
administrator

Database maintenance
tuning, patching and

upgrades

Create/manage
users

While a single administrator may want to perform multiple functions for convenience, the ability to divide these
duties among multiple users allows for separation of duties with Database Vault enforcing the SoD. These
powerful roles shouldn’t be granted to a single user otherwise a compromised account may allow the attacker to
steal sensitive data very easily.

| 31Securing the Oracle Database

Privileged users on production systems should not be dropping tables, changing system parameters, or
modifying the database objects outside of maintenance windows. Modifying data outside of application
control may also be restricted. DBAs frequently have terminal windows open in various dev, test, and production
systems and can potentially run damaging SQL on production systems accidentally.

Oracle Database Vault provides fine-grained SQL command rules to prevent accidental or malicious SQL
changes to the data and the database. These fine-grained rules can prohibit certain commands from running
or they can dictate the time of day when commands can be run along with the permissible client IP address and
other context data. For example, organizations can limit DBAs to run certain ALTER SYSTEM commands only
from their desktops at work and only during working hours to prevent unauthorized remote access off-hours.
Another example is to limit SQL commands like CREATE, DROP or ALTER TABLE to maintenance windows, require
that any change has to be associated with a trouble ticket number, or ensure that two DBAs have logged in at
the same time before the command can succeed.

Controlling database commands with Oracle
Database Vault

So far we have discussed how to limit access to sensitive data by privileged users using Database Vault. Let’s
consider the scenario where one of the application or user accounts does get compromised due to some reason.
If that compromised account had access to many schemas or had many privileges, the hacker could exploit all
of them. One way to reduce the loss is by restricting the privileges and the access this particular user has to the
bare minimal they need to do their assigned set of responsibility. This set of rules and privileges is called the
“least privileged” set.

While there are dictionary tables and views to show which privileges and roles have been granted, it is much
harder to determine which ones are actually needed. This is especially true in systems that have been in use
for some time as privilege and role grants tend to accumulate and it is difficult to know when it is safe to revoke
them. When a new administrator joins the organization, or is assigned a new task, it may be important to limit
this user from doing anything else but the new task. Database accounts for applications also tend to accumulate
more roles and privileges over time with patches requiring more privileges.

Oracle Database 12c introduced Privilege Analysis that captures privileges and roles actually used at run-time.
After capturing the usage for some period of time, or running through all the test cases, the DBA_USED_PRIVS
and DBA_UNUSED_PRIVS views show which privileges and roles have been used or not used, respectively.

The security administrator may decide to revoke the unused privileges from the user, or at minimum, audit the
usage of unused roles and privileges to detect misuse. Privilege Analysis helps you reduce the impact due to a
compromised account.

Limiting breach impact with Privilege Analysis

| 32Securing the Oracle Database

There are three key elements to consider when operationalizing Database Vault in your environment:

• What needs to be protected, and under what conditions

• Which SQL commands should be allowed in your database environment

• What process and organizational changes are needed because of new enforced separation of duties

Prior to creating the Database Vault realms, you have to know which data is sensitive. One could argue that all
user data is sensitive, and that a realm should be put automatically on every user schema. Starting with Oracle
Database 19c, Database Vault Operations Control blocks common users (infrastructure DBAs, for example) by
default from accessing local data in pluggable databases (PDBs) in autonomous, regular Cloud, or on-premises
environments. No realms have to be specifically created.

To determine which SQL commands to allow, one can look at their audit records to discover what critical SQL
commands (i.e., ALTER SYSTEM, ALTER DIRECTORY,...) were run and the context they were run (IP address,
program name, user name, etc.). Command Rules with trusted path can be created to constrain authorized
commands to the time of day, incoming IP address and other rules to ensure changes are done in accordance
with policy.

Most thought, however, has to be given to the separation of duties with Database Vault as it enforces the
separation of duties. Just as the initiator of purchase orders cannot be the same person who approves purchase
orders, separation of duties with Database Vault enforcement improves security, and reduces chances of a
breach. Some organizations take multiple steps before they implement full SoD. For example, since the SoD is
enforced by the new Database Vault roles, the new roles can be granted to the same DBA(s) initially and then
steps can be taken towards separating SoD. This allows some controls in Database Vault to be implemented
quickly and for SoD changes to be spread out over a longer time frame.

DBA staff can be hesitant to turn on preventive controls in case applications stop functioning or any
administrative scripts stop working. Oracle Database Vault introduced simulation mode with Database 12c
Release 2 so one can verify realms and SQL command rules without having any impact on application run-time
and operations. Simulation mode only logs violations instead of blocking them, so a full end-to-end regression
test can be done without stopping. Oracle Database Vault controls can then be updated based on the simulation
log data.

Finally, audit records need to be captured and alerted on when a violation occurs. These audit records are high
value since any alert either indicates an initial probe by a malicious user or the need for additional training for
existing users on accessing sensitive data.

Operationalizing Oracle Database Vault

A number of Oracle applications—both on the Oracle Cloud and on-premises have been certified to work with
Oracle Database Vault, including Oracle Fusion Human Capital Management, Enterprise Resource Planning
Cloud Services, Oracle E-Business Suite, and Peoplesoft. Please review the certification matrix on Oracle
Support for more information about on-premises certifications and the Oracle Cloud website for cloud support.

Oracle Cloud and applications

| 33Securing the Oracle Database

Stealing sensitive data using compromised privileged user accounts is one of the most common attack vectors.
Oracle Database Vault security controls such as realms, and SQL command rules protect sensitive data and
sensitive database operations from privileged or compromised insiders.

By implementing separation of duties and least privilege, we can minimize the losses from compromised
accounts. While a single administrator may want to perform multiple functions for convenience, the ability to
divide these duties among multiple users using Oracle Database Vault greatly improves security.

Summary

 | 34Securing the Oracle Database

Data encryption and
key management04

| 35

Even the strongest defense is useless if an attacker can just go around it. We can appreciate this with an
example from the physical world. When attempting to rob a building, thieves will bypass the front door
protected with a deadbolt and look for a less secure back door or an unlocked window. Similarly, database
authentication and authorization secure the “front door,” ensuring that data is only available to those who
are authorized and not accessible to anyone else. However, if attackers are unable to gain access via the
normal means, they might try to circumvent database access controls and go after the data in another way.

One way attackers can access data is by intercepting the data as it travels over the network, for example
between a database client and a database server. On many networks, it is relatively easy for an attacker to
capture network traffic and then extract whatever information was transmitted between the two systems as
many internal network connections are not encrypted.

Another way for attackers to access data is by gaining access to the system as a privileged operating system
user and directly read the database files, bypassing database controls. Attackers can also go after database
backup files which might be stored on physical media and shipped to a remote location.

Encryption is the best technique for protecting data in these situations as it renders the data unintelligible
to those who attempt to access it directly. With encryption, the problem of protecting a large amount of data
is reduced to a much simpler problem of protecting an encryption key. As long as the attackers do not have
the key, any encrypted data they manage to access provides nothing useful. Encryption is also frequently
required in order to comply with regulations or security standards regarding sensitive or personally identifiable
information (more in Chapter 11).

This chapter explains how encryption protects data in motion and at rest for the database. It also discusses
the considerations for securely storing and managing the encryption keys that ultimately protect the
encrypted data.

Why encrypt data?

The ability to encrypt data on the network, using either Transport Layer Security (TLS) or Oracle Native Network
Encryption, is a standard feature of the Oracle Database. This feature can provide both confidentiality (to
prevent others from reading data sent over the network) and/or integrity protection (to prevent others from
modifying or replaying the data). Additionally, TLS can provide client and server authentication. All Oracle
client software (thin and thick JDBC, instant client, SQL*Plus) support native network encryption and integrity
protection as well as TLS.

Because of the very simple setup, and the fact that no additional external infrastructure or certificates are
required, Oracle’s native network encryption is used by a large majority of customers.

Oracle Database also supports industry-standard Transport Layer Security (TLS) which can support both
authentication and encryption. TLS offers considerable flexibility. For example, TLS may be configured in
server-authenticated mode (where the server presents an identifying certificate) to provide encryption of data
in motion between the database and client. TLS may also be configured in mutually-authenticated mode (where
both the server and the client possess an identifying certificate) to provide both encryption of data in motion
and authentication of the database user. TLS certificates are stored in an Oracle wallet and may be self-signed
or issued by a recognized certificate authority.

Encrypting data in motion for databases

 | 36Securing the Oracle Database

When information is written to the database, it is stored in files, either on a local file system or in some other
form of storage (ASM for example). Encryption of this data ensures that an attacker cannot read the information
directly from those files.

There are multiple ways you could encrypt the data: at the application layer, at the file or volume layer, or at
the database layer. Irrespective of the layer where encryption is done, the key considerations include security,
performance, simplicity of installation and use, transparency to existing applications, time taken in converting
data from plaintext to encrypted form, patching, and key management. One really needs to think through all
these topics before selecting any given encryption strategy as it can have long-term effects.

Application-level encryption is driven from the application code where it encrypts the data before storing it in
the database. This not only requires each application to know how to encrypt and decrypt within different parts
of the process flow, but it also must manage encryption keys and securely store them somewhere. Encryption in
the application tier also adversely limits the types of queries that can be run outside of equivalency searches on
encrypted columns. For example, common analytic queries that match against data ranges or computed values
on the server will not work. If multiple applications share the information in the same database, encrypting
in the application requires they collaborate to encrypt and decrypt the same data in the same way. Further,
application-level encryption does not benefit from Oracle Database In-Memory and Exadata high
performance architecture.

Essentially, encrypting data at the highest application layer imposes a significant development and
management burden because it limits performing meaningful relational computation on the data. It can also
cause severe performance problems because the database might no longer be able to use indexes. Having said
that, there are some narrow use cases where application-level encryption may make sense. For example, if you
want to store some secret string or a blob where you do not want it to be visible to any other database user
including the administrators, and where you are okay with not doing any database operations on that value,
then application-level encryption could be used.

Encrypting data at rest in databases

For TLS encryption, in most cases you will allow the server and client to negotiate the cipher suite used during
communication (they will select the strongest mutually supported algorithm). However, if desired you may
explicitly require certain algorithms. If desired, TLS encryption may be configured to operate in FIPS-140 mode,
which enforces stricter control over which encryption libraries are used.

Security and performance often have an inverse relationship, and the same is generally true with TLS cipher
suites. For example, ECDHE, the strongest default cipher suite, is also the one with the highest overhead.
Although stronger from a security viewpoint, these algorithms will be less performant than algorithms using
static keys (RSA, ECDH or DHE), and within that family, ECDHE_RSA is less performant than ECDHE_ECDSA and
so on. If throughput degradation is a concern, encryption overhead should be considered when choosing
your cipher suite. Note that either the database client OR server can override the default list, so if throughput
concerns are only applicable to a limited number of clients, users have the flexibility to specify the stronger
algorithms only for certain clients. For more information on configuring TLS encryption, refer to the Oracle
Database Security Guide.

| 37Securing the Oracle Database

File or volume encryption is about encrypting the files with the database data. For example, you could use
an encrypting file system (such as NFS). This seems simple but has a number of disadvantages when used to
protect tablespace data in Oracle databases. First, file/volume encryption software lacks database user context.
This means the Oracle Database running as OS user ‘oracle’ on the operating system and a human (malicious)
user who also logs in as ‘oracle’ would both have access to the decrypted data. Another disadvantage is the
overall inefficiency of a distributed database system when using volume encryption. For example, in order
to transfer redo logs from a primary to standby database, first the data must be decrypted at the primary
database, encrypted for transport across the network, decrypted at the destination, and then re-encrypted
for storage on the standby database. Encrypted data cannot be simply copied to the receiving system because
the source and target are each encrypted with their own encryption key.

Finally, in the case of third-party encryption solutions, there is a potential for introducing system instabilities
and upgrade issues through invasive operating system and/or file system modules. Such third-party software
can also disrupt patching policies, preventing teams from applying operating system patches until a dependent
patch is available.

These two techniques are not optimized for encrypting the data in Oracle databases. What we need is a
mechanism that improves security and reliability, while minimizing the management burden.

Oracle Transparent Data Encryption (TDE) encrypts data within the database tier. The encryption is transparent
to authorized applications and users because the database automatically encrypts data before it is written
to storage and automatically decrypts it when reading from storage. Authorized applications that store and
retrieve data in the database only see the decrypted (or “plaintext”) data.

TDE prevents privileged operating system users, network and storage administrators (or someone
masquerading as them) from bypassing the database controls to access the data directly. Authorized database
users and applications do not need to do anything special or different from the way they normally access the
database. Instead, the database enforces the access control rules described in the previous chapters as before
and denies access if the user is not authorized to see the data.

Transparent Data Encryption in Oracle databases

Applications

Authorized access

Database memory (SGA)
(data decrypted)

Database reader/writer
processes (encryption and decryption)

Encrypted tablespaces

Users

Figure 4.1: Users and applications work against cleartext data in database memory; for them, Transparent Data Encryption is ‘transparent’.

| 38Securing the Oracle Database

TDE can encrypt both select application table columns, as well as entire tablespaces containing all application
data. With tablespace encryption, you do not need to track which columns to encrypt or worry about column
characteristics such as indexes and constraints. Creating an encrypted tablespace is easy, as shown here:

Here 256 bit AES algorithm is used as the encryption algorithm. Even if your applications do not create encrypted
tablespaces as part of the installation process, the database can be configured to automatically encrypt new
tablespaces regardless.

With TDE, sensitive data remains encrypted throughout the database, whether it is in tablespace storage files,
temporary or undo tablespaces, or other files such as redo logs. In addition, TDE can encrypt entire database
backups and Data Pump exports, and Oracle Recovery Manager (RMAN) and Data Pump both integrate with
TDE encrypted data.

Oracle TDE is engineered to be highly performant. It automatically leverages special instructions in Intel (AES-NI)
and SPARC CPUs to accelerate cryptographic operations. In addition, TDE tablespace encryption integrates with
the performance optimizations built into Oracle’s Engineered Systems. For example, TDE tablespace encryption
works seamlessly with Exadata Hybrid Columnar Compression (EHCC) and Smart Scan technology.

Oracle TDE has become one of the most well-established ways to encrypt data-at-rest. However, many
customers have terabytes of clear-text data in their existing databases, and they need some way to encrypt
them quickly without any downtime.

Online tablespace encryption, introduced with Oracle Database 12c Release 2, enables zero-downtime migration
from plaintext to encrypted data, or while converting from one encryption algorithm to another. An existing
tablespace can easily be encrypted online with a command similar to:

Online encryption temporarily uses additional storage of the same size as the processed tablespace. Oracle also
provides two offline encryption methods that do not require additional storage, but these require the tablespace
to be offline, or the database to be in mount mode. In Oracle Database 12.2 and later, an existing tablespace can
be encrypted with a command similar to:

In Oracle Database 11.2.0.4 and later, multiple datafiles can be encrypted offline in parallel with a command
similar to:

In you are using Oracle Data Guard where the standby databases are already in mount mode, offline encryption
can be used to minimize the downtime without the need for additional temporary storage space. The procedure
is to turn off the managed recovery process, encrypt the standby database’s data files, perform a switch-over,
and then encrypt the former primary database. In this scenario, the downtime for encrypting any size database
is as short as the duration of switch-overs.

Migrating cleartext data to encrypted tablespaces

ALTER TABLESPACE online_accounts ENCRYPTION ONLINE using ‘AES256’ ENCRYPT;

 CREATE TABLESPACE investigations
DATAFILE ‘$ORACLE_HOME/dbs/investigations.dbf’
ENCRYPTION USING ‘AES256’;

ALTER TABLESPACE court_documents ENCRYPTION OFFLINE ENCRYPT;

ALTER DATABASE DATAFILE ‘$ORACLE_BASE/oradata/investigations.dbf’ ENCRYPT;

| 39Securing the Oracle Database

The security of encrypted data depends on maintaining the secrecy of the keys used for encryption. Proper key
management is essential for preventing an attacker from discovering the encryption key and gaining access
to data. Proper key management also ensures that active keys are not lost, that keys are rotated periodically,
and that old keys are securely archived to provide continued access to encrypted backup data sets. Many
regulations, such as those developed by the Payment Card Industry (PCI), require physical separation between
encrypted data and encryption keys, as well as periodic rotation of encryption keys to limit the exposure period
if a key somehow gets exposed.

Oracle TDE uses a two-tier key architecture to create and manage the keys used for encryption. TDE uses the
master encryption key (MEK) to encrypt the internally generated data encryption keys (DEK) that are in turn
used to encrypt columns and tablespaces. DEKs are managed by the database behind the scenes. The two-
tier key architecture simplifies key rotation. When the MEK is replaced, there is no need to re-encrypt all data,
but only the much smaller set of DEKs. If DEKs need to be rotated or if they need to encrypt data with another
algorithm, customers can use online tablespace encryption as described above.

Administrators perform key management operations (create, open, rotate, backup, etc.) either through a series
of SQL commands, or by using Oracle Enterprise Manager. Oracle Database 12c introduced the SYSKM privilege
to allow key management operations without requiring the powerful SYSDBA privilege.

The MEK is separated from encrypted data, stored outside of the database, and directly managed by the
database security administrator in a keystore. This can be a local keystore like the Oracle wallet or a centralized
keystore such as Oracle Key Vault. Starting with Oracle Database 18c, customers can import externally
generated MEKs into the wallet, enabling “bring your own key” for wallet-based TDE deployments.

Oracle TDE two-tier key architecture

Figure 4.2: Oracle TDE encryption keys can be managed locally on the server in Oracle wallets, or in a centralized keystore such as Oracle
Key Vault.

Applications

Encrypted data

Other
tablespace

HCM
tablespace

101010101010101010
network encryption

(native or TLS)

Oracle Key Vault

Oracle Wallet

DF11233 U*1
$5Ha1qui %H1
HSKQ112 A14
FASqw34 £$1
DF@£!1ah HH!
DA45S& DD1

Disks

Backups

Exports

O�-site facilitiesor

| 40Securing the Oracle Database

The most important aspect of key management is storing the keys in a safe location and restricting access to
authorized entities. By default, TDE stores the master encryption key in a PKCS#12 standard-based file called
Oracle Wallet. The content of the wallet is encrypted using a key derived from the wallet password. Note that if
the wallet is somehow lost or corrupted or the password is forgotten, there is no way to recover the data that is
encrypted using the MEK in the wallet. Hence, it is important to securely back up the password protected wallet.
Oracle Key Vault, described in the next section, provides an automated solution for backing up and managing
these wallets.

Local key management with Oracle Wallets

With the increasing number of encrypted databases, managing wallets can become a burden. Data can be at
risk if wallets are lost or stolen, or if passwords are forgotten. Furthermore, many regulations do not allow the
encryption keys to be stored on the same server as the encrypted data, and many organizations require a clear
separation of duties between DBAs and key management administrators. To ease the key management burden,
and reduce risk of losing access to wallets, customers need external key management solutions.

Oracle Key Vault (OKV) is an enterprise-grade centralized key manager for your Oracle databases and provides
continuous availability, security, and scalability for master keys, wallets, and secrets. Oracle Key Vault provides
continuous availability and high scalability for both read and write operations without any data loss. Customers
can group up to 16 nodes to form a multi-master cluster that can be deployed across geographically distributed
data centers. All nodes are active, significantly lowering the total cost of ownership.

Centralized key management with Oracle Key Vault

Figure 4.3: Oracle Key Vault securely delivers MEKs to Oracle databases on demand.

Startup database

Mutually authenticated TLS 1.2 connection

Database mounted

Database open

Encrypt/decrypt

Database requires manual opening of the connection
to OKV, or auto-opens the connection to OKV

The database fetches the master encryption key
from OKV, and the PKCS#11 library (optionally)
populates the in-memory and the persistent cache

1

2

3

4

5

6

Key Vault cluster
(up to 16 nodes)

| 41Securing the Oracle Database

Databases can connect to any node in the Oracle Key Vault cluster to retrieve master encryption keys. Any
updates to keys or changes to authorization rules are synchronously replicated to a partner Oracle Key Vault
node, ensuring zero data loss in the event of a node failure. If the current Oracle Key Vault connection fails or if a
node goes down for any reason, the database servers transparently failover to the nearby active nodes for read/
write operations without down time or user intervention.

Oracle Key Vault supports TDE keys across enterprise database deployments using Multitenant, Real Application
Cluster (RAC), Data Guard, GoldenGate, and other Oracle products and technologies. In addition to TDE keys,
Oracle Key Vault also manages Java Keystores, MySQL master encryption keys, Solaris Crypto keys, and ASM
Cluster File System (ACFS) volume encryption keys. Customers can periodically back up their local Oracle
wallets and Java Keystores in the centralized Oracle Key Vault, or they can remove the wallet files from their
environment entirely by using always-on Oracle Key Vault connections.

Oracle Key Vault also supports Secrets Management. This capability allows you to upload database account
passwords for maintenance scripts (nightly RMAN backups, batch loading into a data warehouse, refreshing
materialized views) into Oracle Key Vault and securely retrieve them from there. This reduces the management
burden of maintaining individual Secure External Password Stores (SEPS) for automated database operations
and simplifies management and sharing of those passwords between databases. Additionally, private SSH keys
can be uploaded into Oracle Key Vault to protect from loss and abuse of stolen keys.

Figure 4.4: Oracle Key Vault manages Oracle TDE MEKs, as well as other keys and security objects.

Oracle
Database

Key Vault Cluster
(up to 16 nodes)

Oracle
Wallet

Oracle Database

Oracle Wallet

Java
Keystore

Secrets
Management

ZDLRA

MySQL Keys

Solaris
Crypto Keys

ACFS Volume
Encryption Keys

ASM Storage
Nodes

GoldenGate
encrypted trail �les

wss://……/Oracle DB Deployments
• Multi-tenant
• RAC
• GoldenGate
• Data Guard
• Exadata
• ExaC@C
• Autonomous Database
 dedicated on ExaC@C

both on-prem and in OCI

| 42Securing the Oracle Database

To on-board a large number of databases, Oracle Key Vault administrators can use the supplied RESTful APIs to
prepare a set of scripts for the DBAs to run. Seconds later, the DBAs can begin encrypting their databases while
the security team securely manages the master keys within Oracle Key Vault. Oracle Key Vault also supports
“bring your own key” for Oracle Key Vault-based TDE deployments.

Oracle Key Vault provides separation of duties for its administrators. The Oracle Key Vault System Administrator,
Key Administrator, and Auditor roles can be granted to individual administrators or the roles can be collapsed
and be granted to fewer administrators. All administrative actions, access to key material, as well as automated
onboarding of databases using the RESTful API, are audited. Optionally, Oracle Audit Vault can be used to
automate the collection of audit records from Oracle Key Vault.

Oracle Key Vault deploys as a security-hardened software appliance that uses the industry standard OASIS Key
Management Interoperability Protocol (KMIP) for communications. It is also available from the Oracle Cloud
Marketplace (https://cloudmarketplace.oracle.com/marketplace/app/OracleKeyVault), from where it can be
deployed in your Oracle Cloud Infrastructure (OCI) tenancy in minutes. Oracle Key Vault servers can span your
data centers and OCI regions, providing fault-tolerant hybrid key management for your hybrid-cloud
database deployments.

Figure 4.5: Oracle Key Vault supports your journey to the cloud.

Availability
Domain 2

Availability
Domain 3

Oracle Cloud
Marketplace

VPN or
FastConnect

Users

Applications

Availability
Domain 2

Availability
Domain 3

| 43Securing the Oracle Database

Rising security threats, expanding compliance requirements, and cloud computing are just a few of the reasons
why encryption has become critical for enterprises. Encrypting data-in-motion helps maintain confidentiality
and integrity of data as it travels across the network, while encrypting data-at-rest blocks unauthorized
access to sensitive data using methods that circumvent the database. Important considerations for selecting
encryption solutions are security, performance, simplicity of installation and use, transparency for existing
applications, data migration from plaintext to encrypted form, patching, and key management.

TLS and Oracle native network encryption are standard features of the Oracle Database for protecting data in
motion. TDE safeguards sensitive data against unauthorized access from outside of the database by encrypting
data at rest. It prevents privileged operating system users from bypassing controls and directly inspecting
the contents of database files. It also protects against theft, loss, or improper decommissioning of database
storage media and backups. Oracle Key Vault eases the management overhead of mass deployment of TDE by
providing a centralized key management platform. Encryption and centralized key management work together
to help address privacy regulations and standards such as the PCI-DSS, HIPAA, and EU GDPR.

Summary

 | 44Securing the Oracle Database

Discovering
sensitive data05

| 45

The amount of data that organizations collect and manage is growing every day. Data has become the fuel for
developing better products and services, making smarter business decisions, gaining strategic advantage over
competitors, and growing business. Even government policies and programs are driven by data today. In today’s
world, data has become the most valuable resource and a necessity for every organization.

A significant percentage of data is usually sensitive and personal. This data, if in the wrong hands, can be
monetized by committing identity theft and financial frauds, selling government and trade secrets, or using
it for future attacks. Data, being the most valuable resource, has become the prime target of cybercriminals.
On the other hand, loss of sensitive data can be catastrophic for business, impacting companies’ finances,
reputations, customer trust, and competitiveness. The importance of data and growing security threats make
it necessary to protect sensitive data. At the same time, the data privacy laws and standards such as EU GDPR,
PCI-DSS, and HIPAA mandate protection of personal data.

To protect sensitive data, the first step is to understand what kind and how much sensitive data a database has
and where it is located. This knowledge can be used to implement appropriate security controls to protect data.

Identifying and locating sensitive data is hard and often does not happen reliably. Many organizations have
difficulty finding all of their sensitive data due to the complexity of large applications, which have often been
developed over long periods of time. Frequently, the sensitive data outlast their original owners and exist
beyond the knowledge of the person who currently owns and manages that data.

Sensitive data discovery tools automate the process of discovering and classifying sensitive data. This chapter
introduces the basic elements of sensitive data discovery and gives an overview of the Oracle technologies
that can be used to discover sensitive data: Database Security Assessment Tool (DBSAT), Enterprise Manager
Application Data Modeling, and Data Safe.

 | 46Securing the Oracle Database

Sensitive data, quite simply, is any information that should not be made available to unauthorized people,
whether they operate inside or outside the organization. Figure 5.1 shows some examples of the categories and
types of sensitive data usually found.

Sensitive data

The most common way to discover sensitive data in a database is to search for column names using keywords
or search patterns (regular expressions). For example, the following search pattern can be used to discover
columns containing Social Security numbers. It matches column names such as ‘SSN#’, ‘SOCIAL_SECURITY_NO’,
and ‘SSN_NUMBER’.

Sometimes, column names are obscure and not easy to catch using search patterns. If a database has column
comments, they can be searched to discover sensitive columns. For example, the following search pattern can
be used to find keywords such as ‘SSN No’ and ‘Social Security numbers’ in column comments.

Going one step further, the actual data in database columns can be checked to improve accuracy and discover
additional columns. For example, the following data pattern can be used to search for Social Security numbers
such as 333-93-2585 and 383368610.

Discovering sensitive data

Figure 5.1: Examples of sensitive data categories and types

Identi�cation

SSN
Name
Email
Phone
Passport
Tax ID
Driver License
…

Biographic

Age
Gender
Race
Citizenship
Address
Family Data
Date of Birth
Place of Birth
…

IT

IP Address
User ID
Password
Hostname
GPS location
…

Financial

Credit Card
Security PIN
Bank Name
Bank Account
IBAN
Swift Code
…

Healthcare

Provider
Insurance
Height
Blood Type
Disability
Pregnancy
Test Results
ICD Code
…

Employment

Employee ID
Job Title
Department
Hire Date
Salary
Stock
…

Academic

College Name
Grade
Student ID
Financial Aid
Admission Date
Graduation Date
A�endance
…

Chapter-5 graphic-1

COLUMN NAME PATTERN = (SOCIAL.?SECURITY|SSN).?(NO|NUM|#)

COLUMN COMMENT PATTERN = (SOCIAL SECURITY|SSN) (NO|NUM)

COLUMN DATA PATTERN = [0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}

| 47Securing the Oracle Database

Such data patterns can be used to check one of the values in a column. As there can be data quality issues,
a better approach is to check multiple values and flag a column as sensitive if a high fraction, say 80%, of
the values match.

A sensitive data type (or sensitive type) is basically a container of these search patterns and defines what
to search for. For example, the following sensitive type can be used to search for columns containing Social
Security numbers.

In addition, data types of columns can be used to speed up the discovery process and improve result accuracy.
For example, birth dates are more likely to be in date type columns and person names can be searched in
varchar type columns only.

Good data discovery tools automate the discovery process by combining the discussed methods and by
adopting other advanced techniques and optimizations. Such multi-pronged approach helps minimize false
positives and false negatives. Oracle provides multiple sensitive data discovery tools described in the
following sections.

[Social Security Number]

COLUMN NAME PATTERN = (SOCIAL.?SECURITY|SSN).?(NO|NUM|#)

COLUMN COMMENT PATTERN = (SOCIAL SECURITY|SSN) (NO|NUM)

COLUMN DATA PATTERN = [0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}

Oracle Database Security Assessment Tool (DBSAT) is a standalone command-line tool that not only helps
discover sensitive data but also analyzes database configurations, users, and security policies. It helps uncover
security risks and provides recommendations to improve the security posture of Oracle databases. DBSAT is
available free of cost to all Oracle customers. This section covers the data discovery component of DBSAT. See
Chapter 10 to learn about broader DBSAT capabilities.

The data discovery component of DBSAT helps identify sensitive columns in Oracle databases using sensitive
types. DBSAT Discoverer collects the metadata (column names and comments) and matches it against the
patterns defined as part of sensitive types. It generates detailed data assessment reports in HTML and
CSV formats.

Sensitive types

DBSAT provides 125+ predefined sensitive types to help discover common sensitive and personal data. These
sensitive types are arranged under sensitive categories such as identification, biographic, healthcare, financial,
employment, and academic data. Users can modify the predefined sensitive types and create new ones to
meet specific requirements. DBSAT helps discover sensitive columns in English and seven major European

Discovering sensitive data using DBSAT

| 48Securing the Oracle Database

languages: Dutch, French, German, Greek, Italian, Portuguese, and Spanish. The following example shows a
DBSAT sensitive type that can be used to discover columns containing person names. It has column name and
comment patterns and is associated with “Identification Info” category and “Public IDs” subcategory.

Sensitive data assessment report

DBSAT sensitive data assessment report helps understand what kind and how much sensitive data a
database has, where it is located, and the associated risk. Figure 5.2 shows the summary section that provides
information about the number of tables, columns, and rows identified as sensitive, grouped by sensitive
category and subcategory. In the figure, * indicates the number of unique tables with sensitive data, and **
indicates the number of unique rows with sensitive data.

Sensitive category # Sensitive tables # Sensitive columns # Sensitive rows

BIOGRAPHIC INFO - ADDRESS 9 36 6307209

BIOGRAPHIC INFO - EXTENDED PII 2 2 2000

FINANCIAL INFO - BANK DATA 2 2 830

FINANCIAL INFO - CARD DATA 7 7 3235

HEALTH INFO - PROVIDER DATA 1 1 149

IDENTIFICATION INFO - NATIONAL IDS 2 6 2000

IDENTIFICATION INFO - PERSONAL IDS 3 3 405

IDENTIFICATION INFO - PUBLIC IDS 9 26 2401125

IT INFO - USER DATA 13 15 13228

JOB INFO - COMPENSATION DATA 10 12 3380

JOB INFO - EMPLOYEE DATA 8 16 406

JOB INFO - ORG DATA 5 6 278

TOTAL 29* 132 8617644**

[Full Name]

COLUMN NAME PATTERN = (CUSTOMER|CUST|CLIENT|FULL|PATIENT|PERSON).?(NAME|NM)

COLUMN COMMENT PATTERN = (CUSTOMER|CUST|CLIENT|FULL|PATIENT|PERSON).?NAME

SENSITIVE_CATEGORY = Identification Info – Public IDs

Figure 5.2: Sensitive category level summary

| 49Securing the Oracle Database

Each sensitive category has an associated risk level (high, medium, or low), which helps further classify the
discovered sensitive tables and columns. The report also provides recommendations on how to protect sensitive
data based on the associated risk level. Figure 5.3 shows some recommendations for protecting data with
high risk.

Figure 5.3: Recommendations for protecting data with high risk

| 50Securing the Oracle Database

As shown in Figures 5.4 and 5.5, the report also provides schema, table, and column level details along with
some statistics to help understand the sensitive data present in a database.

Schema Table name Columns Sensitive
columns Rows Sensitive category

DMS_ADMIN MASK_DATA 9 7 10000 BIOGRAPHIC INFO - ADDRESS,

IDENTIFICATION INFO -

PUBLIC IDS, IT INFO - USER

DATA

EMPLOYEES

EARCH_DEV

DEMO_HR_

EMPLOYEES

34 16 1000 BIOGRAPHIC INFO -

ADDRESS, BIOGRAPHIC

INFO - EXTENDED Pll,

FINANCIAL INFO - CARD

DATA, IDENTIFICATION

INFO - NATIONAL IDS,

IDENTIFICATION INFO

- PUBLIC IDS, IT INFO

- USER DATA, JOB INFO -

COMPENSATION DATA

EMPLOYEES

EARCH_DEV

DEMO_HR_ROLES 2 1 26 IT INFO - USER DATA

EMPLOYEES

EARCH_DEV

DEMO_HR_

SUPPLEMENTAL_

DATA

6 4 415 FINANCIAL INFO - BANK DATA,

FINANCIAL INFO - CARD DATA,

IT INFO - USER DATA, JOB

INFO - COMPENSATION DATA

EMPLOYEES

EARCH_DEV

DEMO_HR_USERS 8 5 12 IDENTIFICATION INFO -

PUBLIC IDS, IT INFO - USER

DATA

EMPLOYEES

EARCH_DEV

DEMO_HR_USER_

LABELS

2 1 12 IT INFO - USER DATA

Figure 5.4: Table level summary

| 51Securing the Oracle Database

Schema name Table name Column name Column
comment

Sensitive
category

Sensitive
type

Risk
level

DMS_ADMIN MASK_DATA CITY -- BIOGRAPHIC

INFO - ADDRESS

CITY High

Risk

DMS_ADMIN MASK_DATA GIVENNAME -- IDENTIFICATION

INFO - PUBLIC

IDS

FIRST

NAME

High

Risk

DMS_ADMIN MASK_DATA STREETADDRESS -- BIOGRAPHIC

INFO - ADDRESS

STREET High

Risk

DMS_ADMIN MASK_DATA SURNAME -- IDENTIFICATION

INFO - PUBLIC

IDS

LAST

NAME

High

Risk

DMS_ADMIN MASK_DATA TELEPHONENU
MBER

-- IDENTIFICATION

INFO - PUBLIC

IDS

PHONE

NUMBER

High

Risk

DMS_ADMIN MASK_DATA USERNAME -- IT INFO - USER

DATA

USER ID High

Risk

DMS_ADMIN MASK_DATA ZIPCODE -- BIOGRAPHIC

INFO - ADDRESS

POSTAL

CODE

High

Risk

EMPLOYEESEAR

CH_DEV

DEMO_HR_

EMPLOYEES

ADDRESS_1 -- BIOGRAPHIC

INFO - ADDRESS

FULL

ADDRESS

High

Risk

EMPLOYEESEAR

CH_DEV

DEMO_HR_

EMPLOYEES

ADDRESS_2 -- BIOGRAPHIC

INFO - ADDRESS

FULL

ADDRESS

High

Risk

Figure 5.5: Sensitive column details

The data discovery results from DBSAT can be used to implement appropriate security controls to protect
sensitive data. The DBSAT report can also be loaded into Oracle Audit Vault and Database Firewall to add
sensitive data context to the data privacy reports and can be used to define policies to audit access to sensitive
data. See Chapter 7 to learn about Oracle Audit Vault and Database Firewall.

| 52Securing the Oracle Database

The Application Data Modeling (ADM) feature in Oracle Enterprise Manager provides the capability to quickly
analyze databases to identify sensitive data present within an application and where it resides within the
database schema. Similar to the DBSAT Discoverer, ADM examines the metadata, i.e., column names and
comments, to discover sensitive columns. In addition, it examines the actual data present in columns, which
helps drive down false negative and false positive rates associated with the data discovery process. For example,
ADM can help locate credit card and national identification numbers based on the column name, column
comment, and the data itself. It also discovers referential relationships between application objects so that
application integrity can be preserved during data masking and subsetting. The next chapter discusses data
masking and subsetting technologies.

Sensitive column types

A sensitive column type in Enterprise Manager consists of patterns for column name, comment, and data.
Figure 5.6 shows a sensitive column type that can be used for locating credit card numbers within an application
schema. The Search Type is used to specify whether any one or all the three patterns must match for identifying
a column as sensitive. The “Or” option helps discover more columns while the “And” option helps minimize
false positives.

Discovering sensitive data using
Oracle Enterprise Manager

Figure 5.6: Sensitive column type definition

| 53Securing the Oracle Database

Oracle provides a set of predefined sensitive column types, and users can create new ones to search domain-
specific data. Figure 5.7 shows some predefined sensitive column types available in Enterprise Manager.

Figure 5.7: Predefined sensitive column types

Discovering sensitive columns and referential relationships

 ADM uses sensitive column types to perform pattern matching and identify sensitive columns. Users can review
the discovered sensitive columns and, if required, add additional columns to the list manually. Figure 5.8 shows
a list of discovered as well as user-defined sensitive columns.

Figure 5.8: Sensitive columns

ADM analyzes the referential relationships between application objects using the foreign key constraints
defined inside the database. It also provides the option to automatically discover application-level referential

| 54Securing the Oracle Database

relationships, which are not defined in the database. Users can review the discovered referential relationships
and add additional relationships manually.

Understanding such dependencies helps preserve application integrity during data masking by ensuring that
the data in the related columns is masked consistently. Figure 5.9 shows a list of parent-child relationships
found inside the data dictionary.

Figure 5.9: Referential relationships

Figure 5.10 presents the overall picture putting all this together. ADM automatically discovers sensitive columns,
database-defined referential relationships, and application-level referential relationships. Information about
the discovered sensitive columns and relationships is contained in an application data model stored in the
Enterprise Manager repository. This application data model can be used to implement security controls such as
data masking and subsetting.

Figure 5.10: Overview of application data modeling

Consumed By

Database
de�ned relations

Application
de�ned relations

Automated
discovery

Data
relationships

Sensitive
columns

Subse�ing Encryption

Masking Database
 Vault

Data
governance

Redaction Audit Vault

| 55Securing the Oracle Database

Many organizations have either already moved to the cloud or are planning to move in the near future.
Security in the cloud follows a shared responsibility model. Depending on the cloud delivery model (IaaS, PaaS,
or SaaS), some layers of the stack fall under the responsibility of the service provider, while others fall under the
responsibility of the service consumer. One aspect that is common to both cloud and on-premises models is
that customers should protect and manage their data, users, and security configurations. To better protect data
with appropriate security controls, it is imperative to know what sensitive or regulated data is stored
in databases.

Oracle Data Safe, a database security cloud service, provides a unified control center for protecting both cloud
and on-premises databases. Data Safe provides an integrated set of security features, including sensitive data
discovery. Using an extensible set of 130+ sensitive types, it helps discover and classify sensitive data. Figure 5.11
shows a sample data discovery report provided in Data Safe. See Chapter 13 for more information on how Oracle
Data Safe can help meet data security requirements, including sensitive data discovery.

Discovering sensitive data using Oracle Data Safe

Figure 5.11: Data discovery report in Oracle Data Safe

| 56Securing the Oracle Database

Understanding sensitive data is the first step to implementing appropriate security controls to protect data.
Oracle provides multiple sensitive data discovery tools: Database Security Assessment Tool (DBSAT), Enterprise
Manager (EM) Application Data Modeling, and Data Safe. DBSAT is a lightweight, easy-to-use tool that helps
quickly analyze the sensitive data in a database and understand the risk. It automatically identifies sensitive
columns, classifies them into risk categories, and provides detailed reports. The EM Application Data Modeling
scans both metadata and data to discover sensitive columns and referential relationships. It helps understand
the dependencies and preserve application integrity during data masking and subsetting. The Oracle Data Safe
cloud service provides a comprehensive data discovery feature and is the recommended option for discovering
sensitive data in Oracle Cloud and on-premises databases. Overall, these tools help discover and classify
sensitive data, enabling users to implement security controls effectively, minimize security risk, and address
requirements associated with regulations such as EU GDPR, PCI-DSS, and HIPAA.

Summary

 | 57Securing the Oracle Database

Masking
sensitive data06

| 58

Reducing the exposure of sensitive data is a challenge faced by many organizations. This data can include credit
card numbers, Social Security numbers (SSN), sales figures, and other personal or proprietary information. The
problem is limited not just to production systems, but any system which has copies of the data. For example,
snapshots of live production data are typically shared with development and data analytics teams so that they have
access to realistic data to support their activities. Attackers have learned that valuable and sensitive data often
ends up in non-production systems where it is generally less protected than in production systems—
making those systems attractive targets for attacks.

Even in production systems, organizations should limit the exposure of sensitive data so that the information
displayed to various users is limited to the minimum required by them to perform their jobs. For example, in the
case of a customer service application, a call center representative may only require access to the last four digits
of a customer’s SSN in order to verify their identity. While the system might require SSN for other purposes such
as credit reporting, displaying SSN to the telephone representative through the application’s user interface violates
the principle of least privilege and creates an unnecessary avenue for compromise of this information.

Organizations have multiple ways to mask or anonymize sensitive data to minimize exposure and the
associated risk.

Data masking, sometimes called “static masking”, involves permanently altering data so that it is no longer
sensitive. Masking sensitive data before it is handed over to development and analytics teams eliminates the
risk of data breaches in non-production environments by irreversibly replacing the original sensitive data with
realistic, but fictitious, data.

In contrast, data redaction, sometimes referred to as “dynamic masking”, obfuscates data on the fly as it is
retrieved by a specific user but does not actually change the stored data. Data redaction limits the exposure of
sensitive data within application user interfaces and helps reduce disclosure risks.

Another related requirement is to extract and share a portion or subset of data instead of sharing the entire
production data set. For example, the analytics team might need only 20% of the production data, data
collected only over the last year, or data specific to a region. Data subsetting provides relevant data, reduces
security risk, and minimizes storage costs by removing unnecessary data from a database.

Together, data masking, data subsetting, and data redaction limit the avenues available to hackers to steal
sensitive data and help facilitate compliance with various regulations such as PCI-DSS and the EU GDPR. See
Chapter 11 for more information on how data masking helps support regulatory compliance.

Knowing what kinds of sensitive data reside in an application is the first step to masking sensitive data. The
previous chapter describes various ways to discover sensitive data. This chapter introduces data masking, data
subsetting and data redaction, and describes how these techniques can be applied to reduce the attack surface
for sensitive data within applications.

Multiple ways to mask sensitive data

 | 59Securing the Oracle Database

Most organizations implement multiple security controls in their production environments to ensure that access
to sensitive data is tightly controlled. But it is equally important to protect sensitive data in non-production
environments. Data privacy standards such as PCI-DSS and the EU GDPR also emphasize minimizing risk in
non-production environments because these systems are typically not as protected or monitored as
production systems.

Oracle Data Masking and Subsetting, an Oracle Enterprise Manager pack, masks and subsets data for non-
production use such as development and analytics. After creating an application data model (ADM) consisting
of sensitive columns and referential relationships, Oracle Data Masking is used to create a masking definition
with rules to mask sensitive columns. For example, as shown in Figure 6.1, names can be replaced with realistic
names and SSNs can be replaced with random SSN values. This masking definition is then used to obfuscate
sensitive data in application schemas while preserving application integrity. The resulting data set may then be
used for non-production purposes such as development, testing, and analytics. Data masking helps minimize
proliferation of sensitive data and reduce the security and compliance boundary while maintaining usability of
the data.

Masking sensitive data

Masking formats

Masking formats define how original data is transformed during the masking process to create an anonymized
and sanitized data set. Oracle provides a comprehensive set of predefined masking formats for common types
of sensitive data such as credit card numbers, phone numbers, Social Security numbers, and national identifiers.
Figure 6.2 shows some of the masking formats provided for different types of credit card numbers. The ability
to create fictitious, but realistic, credit card numbers for varieties of credit cards helps preserve diversity in the
masked data set.

Figure 6.1: Oracle Data Masking overview

Production

Last_Name SSN Salary

AGUILAR 203-33-3234 60,000

BENSON 323-22-2943 40,000

Non-Production

Last_Name SSN Salary

SMITH 148-92-3857 60,000

MILLER 562-99-8392 40,000

| 60Securing the Oracle Database

By leveraging the masking format library, organizations can easily apply data masking and anonymization rules
to sensitive data across enterprise-wide databases and ensure consistent compliance with regulations. New
masking formats can be created using various masking techniques to meet specific requirements. For example,
custom email addresses could be generated in a data set, consistent with a fictitious set of first and last names
contained in other columns within the database. These user-defined formats can also be stored in the masking
format library for future use.

Powerful masking techniques

Oracle provides a comprehensive set of masking techniques, enabling complex applications to function
with masked data in a variety of non-production environments. Figure 6.3 describes some common
masking techniques.

Figure 6.2: Credit card masking formats

| 61Securing the Oracle Database

Figure 6.3: Representative masking techniques

Masking technique Description

Random numbers/strings/

dates

Replaces values in a column with random numbers, strings or dates within a user

specified range.

Format preserving

randomization

Randomizes data while preserving its format. Replaces letter with letter and digit with

digit, but preserves the data length, special characters, and the case (upper or lower)

of characters. This can be applied to a variety of data such as national identifiers, zip

codes and license plate numbers.

Shuffle masking Randomly reorders the values within a column so that statistical relevance is

maintained. This can be applied to ages of employees in a company, for example.

Array list Replaces original sensitive values in a column with random values from a user provided

list. This can be applied to partner names, age, gender or religion, for example.

SQL expression masking Uses a user supplied SQL expression to generate masked values to replace the original

values. For example, email addresses can be generated using values from columns

containing first names and last names. This may be used to mask data contained in

large objects (LOBs) including BLOBs, CLOBs and NCLOBs.

Conditional masking Applies different masking formats to different rows based on a condition. For example,

data about citizens from multiple countries can have unique masked national

identifiers based on their country. Similarly, credit card numbers can be masked while

preserving their original type and format.

Compound masking Masks related data stored in multiple columns as a group. For example, city, state, and

zip code may need to be masked together so that the masked values correlate with

each other.

Deterministic masking Masks data to the same consistent value across multiple databases or applications.

This is used to ensure that certain values such as customer number gets masked to the

same value across all databases. This can be used to maintain referential integrity in a

multi-application test environment.

Reversible masking Encrypts and decrypts sensitive data using a cryptographic key. It is helpful in

scenarios where you want to retrieve the original data from the masked data. For

example, you might have to share masked data with a third party for some business

processing and want to recover the original data after receiving the processed data.

| 62Securing the Oracle Database

Figure 6.4 shows some of the supported masking techniques in action. For example, national identifiers can
be masked differently using conditions based on country codes, health records can be shuffled, names can
be masked in a deterministic manner across databases and masking runs, and license plate numbers can be
replaced with random characters while preserving the original format.

Figure 6.4: Data masking examples

Mask based on condition

Country Identi�er

CA 226-956-324

US 610-02-9191

UK JX 75 67 44 C

Country Identi�er

CA 368-132-576

US 829-37-4729

UK AI 80 56 31 D

Generate random values preserving format

Company Closing price

IBFG $36.92

XKJU ¥789.8

Company Closing price

IBFG $89.57

XKJU ¥341.9

Mask operating system �les stored as blobs

LOB

3178973456

6509876745

LOB

Search : [0-9]{10}

Replace : *

 Shu�e records

Health records

Emp ID First name

324 Albert

986 Hussain

Emp ID First name

324 Charlie

986 Murali

Emp ID First name

324 Charlie

986 Murali

HR

FIN

Generate deterministic output

Health records

The data subsetting component of Oracle Data Masking and Subsetting can also leverage the application data
model to generate a reduced data set of the original data while preserving referential integrity. For example, a
large (>2TB) data set might be subsetted to generate a smaller (100 GB) data set for development and analytics,
thus enabling these activities to be performed efficiently while consuming fewer resources. As shown in Figure
6.5, data subsetting supports different use cases such as extracting a fraction of a large table for application
development, fetching data belonging to a particular region for analytics, or extracting rows belonging to a
particular partition or sub-partition of a table.

Subsetting data

| 63Securing the Oracle Database

Users can also perform integrated data masking and subsetting to extract a subset of production data and then
mask sensitive data in this subset so that it can be shared for non-production use safely. It maximizes the business
value of production data without compromising sensitive information or wasting resources.

Figure 6.5: Data subsetting use cases

11001010100100100100100100100100
100010010101001010101010101010010
010100010100100101010101010101001

100M rows

Relative table size

20M rows

2M rows

Condition based

Extract Asia sales

JAN

FEB

JAN

FEB

EMEA APAC

Asia salesGlobal sales

Table partitions

Sales Sales

Usually, organizations mask sensitive data outside of the production environment. A clone of the production
database is staged in a restricted area outside production. It is isolated from all users except for the administrators
that run masking on it. After masking data and validating that no sensitive data is at risk, this masked copy is then
further cloned and shared with developers, QA, data scientists, and other third-party consumers.

But some organizations may have a stricter security policy mandating that sensitive data never leave the production
environment. In this case, they need to mask sensitive data before moving it out of the production environment.

As shown in Figure 6.6, Oracle Data Masking and Subsetting supports two different modes, providing options to
choose where masking and subsetting should happen.

Flexible masking and subsetting modes

| 64Securing the Oracle Database

In-database mode allows masking and subsetting of data within a non-production database, with minimal or
zero impact on the production environment. As this mode permanently changes the data stored in a database,
it should never be done on a production instance.

Alternatively, the in-export mode can be used to mask and subset data while data is being extracted from the
production database, leaving the original data unaltered on production servers. The extracted and masked
data is written to Oracle Data Pump files, which can be further imported into non-production databases. This
mode eliminates the need for staging servers and helps ensure that sensitive data never leaves the production
perimeter. However, this process should be done at a suitable time so that it doesn’t interfere with the peak
load time.

Figure 6.6: Data masking and subsetting modes

01001011001010100100100100100100100100
100100100010010101001010101010101010010
010101010100010100100101010101010101001

01001011001010100100100100100100100100
100100100010010101001010101010101010010
010101010100010100100101010101010101001

Source Staging Target

In-Database

Clone => Mask/Subset => Replicate

Minimal impact on the production environment

Source Export File Target

In-Export

Extract => Mask/Subset => Import

Sensitive data remains within the production perimeter

Organizations are rapidly adopting cloud, with many preferring it for application development and analytics.
It enables them to cost-effectively build, deploy, and manage applications. For continuous and quality
development, teams prefer to use realistic data from production environments, but they need to ensure that
there are no security and compliance risks.

The Oracle Data Safe cloud service provides tightly-integrated sensitive data discovery and data masking
capabilities that help identify and mask sensitive data in both cloud and on-premises databases, all available
through simple point-and-click interface. See Chapter 13 for more information on how Oracle Data Safe can
help meet security requirements, including data masking.

Masking sensitive data using Oracle Data Safe

| 65Securing the Oracle Database

There is increasing need to control the display of sensitive data contained within applications. For example,
a call center application may have a page that exposes customer credit card and other personally identifiable
information to call center operators. Exposing that information, even to legitimate application users, may violate
privacy regulations and put the data at unnecessary risk exposing it to those who don’t have the need to know.

One common technique for restricting sensitive data displayed in an application is to modify the application
access control logic to redact sensitive data. With redaction, displayed data might be hidden completely,
replaced with random data, or special characters may be applied to part of a retrieved data element such as the
first twelve digits of a credit card number or the username portion of an e-mail address.

However, implementing redaction inside application code can be difficult to maintain. Strict controls must
be placed on new application development to make sure that custom application code and new objects are
properly accessed. In addition, redaction approaches implemented with custom application logic can result in
disparate solutions that are inconsistent across the enterprise, especially in consolidated environments where
multiple applications access the same data. Further, organizations might not have access to the code such as in
the case of packaged applications.

The best approach for controlling the exposure of sensitive data in applications is by enforcing redaction
policies outside of the application control and from inside the production database as the data is being served
live to the application.

Oracle Data Redaction performs selective, on-the-fly redaction of sensitive data in query results prior to
display by applications. This enables consistent redaction of database columns across multiple application
modules accessing the same data. Oracle Data Redaction minimizes changes to applications because it does
not alter actual data in internal database buffers, caches, or storage, and it preserves the original data type and
formatting when transformed data is returned to the application.

Oracle Data Redaction supports a number of different transformations as shown in Figure 6.7.

Redacting sensitive data

Figure 6.7: Examples of data redaction

Full

Partial

RegExp

Random

Stored data

10/09/1992

987-65-4328

�rst.last@example.com

5105105105105100

01/01/2001

XXX-XX-4328

[hidden]@example.com

9512984296540191

Redacted display

| 66Securing the Oracle Database

Figures 6.8 and 6.9 help understand how the application users experience data redaction. Figure 6.8 shows HR
data in original form without any data redaction. Figure 6.9 shows the redacted data in SSN, corporate card,
position and salary fields using partial, regex, random and full transformations respectively.

Figure 6.8: Non-redacted HR data

Figure 6.9: Redacted HR data

| 67Securing the Oracle Database

Predefined redaction formats are available for redacting common sensitive data such as credit card
numbers, social security numbers, zip codes, email addresses, and phone numbers. Figure 6.10 shows some
predefined redaction formats provided by Oracle. Users can also create new redaction formats to meet
specific requirements.

Figure 6.10: Predefined redaction formats

Oracle Data Redaction can be applied selectively based on policies that use the runtime contexts available
from the database and application. These include user names, client identifiers, database roles, and session
information including client IP addresses and program modules. Context information available from Oracle
Application Express (APEX), Oracle Real Application Security (RAS), and Oracle Label Security (OLS) can also
be utilized. Multiple runtime conditions can be joined together within a data redaction policy for fine-grained
control over when redaction occurs.

The redaction policy expression builder within Oracle Enterprise Manager enables administrators to define and
apply redaction policies on existing applications. It guides the user through creating policy conditions that use
context obtained from applications, the database, the APEX framework, and other database security solutions.

| 68Securing the Oracle Database

The power of Oracle Data Redaction resides in its efficient transformation and enforcement inside the database
kernel, declarative policy conditions, and transparency.

Unlike traditional approaches that rely on application coding, data redaction policies are enforced directly in
the Oracle Database kernel, ensuring consistency across application modules and providing stronger security.
Redaction policies are stored and managed inside the database, and they go into effect immediately upon
being enabled. Redaction policies can be applied to all database users, or selectively applied based on a user’s
environment or other factors.

Oracle Enterprise Manager provides an easy-to-use interface for creating and applying redaction policies,
allowing users to specify the protected columns, transformation types, and conditions. In addition to the
Oracle Enterprise Manager administrative interface, PL/SQL APIs can also be used for scripting and applying
redaction policies.

Oracle Data Redaction is transparent to applications and the database. It supports the column data types that
are frequently used by applications and various database objects including tables, views, and materialized
views. Redacted values retain key characteristics of the original data such as the data type and optional
formatting characters. For transparency to the database, Oracle Data Redaction does not affect administrative
tasks such as data movement using Oracle Data Pump or database backup and restore using Oracle Recovery
Manager. It does not interfere with database cluster configurations such as Oracle Real Application Clusters,
Oracle Active Data Guard, and Oracle GoldenGate.

Deploying data redaction

| 69Securing the Oracle Database

Data masking, data subsetting, and data redaction are powerful techniques for limiting exposure of sensitive
data contained within applications. Permanently masking data before it is shared in non-production
environments helps ensure that the sensitive information cannot be compromised even if those systems
are hacked or those users are compromised. Redacting sensitive data, so that it can be displayed without
risk and without altering the stored data, limits exposure of sensitive information to application users. These
technologies enforce the principle of least privilege and play a key role in addressing anonymization and
pseudonymization requirements associated with regulations such as PCI-DSS and the EU GDPR.

Summary

 | 70Securing the Oracle Database

Database auditing and
activity monitoring07

| 71

Attackers that target your crown jewels in databases try multiple techniques. They try to bypass perimeter
security, take advantage of trusted middle tiers, or even masquerade as privileged insiders. It is important
to audit and monitor database activity to know what is happening so that appropriate actions can be taken.

Organizations today have hundreds or thousands of databases where user and administrator activities need to
be audited and monitored for compliance with regulations and detect security breaches. This oversight requires
continuous collection and analysis of massive amounts of activity data to run reports and generate alerts on
anomalous activities.

Database auditing and network activity monitoring is about collecting native database audit and network-based
SQL traffic data to monitor and report on database activity. Database auditing provides a record of database
activities from users and applications, including those with high administrative privileges. Database firewalls
monitor and evaluate incoming SQL traffic at the network level, identify and alert on anomalies or out-of-policy
operations, and block out-of-policy SQL statements from reaching the database.

Oracle Audit Vault and Database Firewall (AVDF) incorporates both auditing and network monitoring
technologies in a single product to provide a comprehensive view of database activity.

There are three common use cases for Database auditing and network activity monitoring: implementing
corporate security guidelines, ensuring regulatory compliance and conducting forensic analysis.

While corporate security guidelines vary, they require auditing privileged user activity, login events, sensitive
data access, monitoring database network traffic, preventing SQL injection attempts, and other security related
activities. This requires a solution that supports database auditing and network monitoring.

An organization’s sensitive data could be subject to regulations such as GDPR, CCPA, PCI, HIPAA, IRS 1075, SOX,
and UK DPA. These regulations require that access to sensitive or personal data be tracked, including access to
data within the database. A solution that provides a rich set of pre-built compliance reports for implementing
these regulations is needed.

Organizations need to support forensic analysis in the event of a breach or when they observe suspicious
events. Forensic analysis requires the ability to not only collect and store vast amounts of audit and network
event records, but also be able to search through it efficiently. In addition, it should support storing and retrieval
of historical data, tracking user privilege changes and stored procedure changes to aid in analysis.

Use cases

 | 72Securing the Oracle Database

Database auditing involves creating and enabling database policies to track user actions, schema changes, login
failures, etc. Each action generates an audit record that includes the specific database operation, the user who
performed the operation, the database objects involved, and time of operation.

Database Firewall monitors and analyzes the SQL traffic on the network going to the database from an application
or from a user/DBA connecting to the database. By monitoring and analyzing the SQL statements, the Database
Firewall identifies and reports on the anomalous SQL statements generated from a SQL injection attack or as a
result of out-of-policy violations and can block them. Additionally, corporate or regulatory policies may require
enforcement of trusted path access to corporate databases ensuring that access requests are only coming from a
list of trusted paths. These corporate or regulatory policies can be addressed using the Database Firewall.

Combining audit data collection with network-based activity monitoring is the best way to gain a complete picture
of database activity. A solution focused solely on network monitoring wouldn’t understand database synonyms
or stored-procedure activity. It is not recommended to capture every activity in a database via auditing due to
additional overhead. The combination of database auditing and network-based monitoring solves those issues
and supports both security and regulatory compliance goals.

Customers frequently start with one capability and later expand their architecture to include both.

Oracle Audit Vault and Database Firewall (AVDF) is a scalable and flexible database auditing and network activity
monitoring solution that consolidates audit data from databases, operating systems, directories, file systems,
and applications into a single repository for analysis, alerting, and reporting on the audit data. AVDF also
monitors SQL statements sent to the database over the network and determines whether to allow, log, or block
the unauthorized SQL statements.

AVDF includes extensive reporting capabilities with an easy to use filter-based reporting interface with quick
drill-downs for relevant information. With AVDF, a single instance of Audit Vault Server can monitor activity
across hundreds of databases, providing a single console from which one can report and analyze security
events throughout the database estate.

AVDF supports multiple databases: Oracle Database, MySQL, Microsoft SQL Server, SAP Sybase, IBM Db2 LUW,
and PostgreSQL. Other databases and application audit data in tables are supported using the custom collector
framework, which collects data via JDBC or REST API. Custom collection is also possible from systems that write
audit data to XML or JSON files. A Java based software development kit (SDK) is included to accommodate
those targets that cannot be accessed using any of the custom collector framework options.

Database auditing? Network-based SQL traffic monitoring?
Or both?

Introducing Oracle Audit Vault and Database Firewall

| 73Securing the Oracle Database

Figure 7.1: Oracle Audit Vault and Database Firewall

Users

Applications Network
events

Audit data, event logs

Audit data, event logs

Reports

Alerts

Policies

Audit Vault Server

Database Firewall Database

Linux, Windows, AIX, Solaris
Microsoft Active Directory

Oracle, SQL Server, IBM Db2, SAP Sybase,
MySQL, PostgreSQL

Operating systems and directory services

Custom sources

X

!

MongoDB, tables, XML, JSON, REST

Audit d
ata, event lo

gs

AVDF comprises of three key components: Audit Vault Server, Audit Vault Agent and Database Firewall.

Audit Vault Server

A central repository of audit records and network events captured by the audit collection agents and
Database Firewall. Audit Vault Server performs four primary functions:

• Consolidation of audit data: Audit Vault Server captures audit and event logs from multiple sources,
including audit data from application tables or files. Audit Vault Server maps the audit data and
event logs to a normalized format, and includes them in a single report across all sources. For Oracle
databases, it captures before/after values, changes to user entitlements, and stored procedure changes.
Recommended policies for Oracle Database are provided in AVDF and can be enabled in the database
with a single click.

• Out-of-the-box pre-defined reports: Audit Vault Server provides dozens of out-of-the-box reports
relating to audit and network activity, privileged user activity, schema changes, entitlement changes,
stored procedure modifications, before/after data value changes, login failures, and compliance reports
for General Data Protection Regulation (GDPR), Payment Card Industry Data Security Standard (PCI-DSS),
Sarbanes-Oxley Act (SOX), Health Insurance Portability and Accountability Act (HIPAA), Gramm-Leach-
Bliley Act (GLBA), Data Protection Act (DPA), and IRS Publication 1075. AVDF repository schema
is documented and enables use of third party tools for specific reporting purposes.

• Configuring alert policies: Using the alert policy builder customers can specify rules for which they want
to generate alerts, such as multiple failed login attempts, sensitive table access by unauthorized users,
and data export operations.

• High Availability and archiving: Audit Vault Server supports a high-availability primary/standby
architecture to ensure that audit record and network event collection does not stop in case of the failure
of the primary node. Further, the collected audit data can be archived to lower cost storage and meet
corporate compliance requirements for data retention.

| 74Securing the Oracle Database

Audit Vault Agent

Audit Vault Agent retrieves audit data from audit trails (sources of audit data) for various targets, such as
databases and operating systems and sends the audit data to the Audit Vault Server. Periodically the Audit
Vault Agent connects to the target to see if new audit records have been generated (since the last retrieval)
and sends those records to the Audit Vault Server. Based on the type of audit trail (database table based audit
trail, directory trail, transaction log trail, etc.) the Audit Vault Agents are deployed on a separate machine or on
the same machine where the audit trail resides. A single Audit Vault Agent can support audit collection from
multiple targets that are of different types.

Figure 7.2: Database audit collection using AVDF

Table audit trail

Redo / Transaction logs

Audit Vault Agent

Directory audit trail

Audit data

Audit Vault Server Console

Oracle Database

Reports

Policies

Audit Vault Server

Alerts

SQL Server

Audit Vault Agent

!

| 75Securing the Oracle Database

Figure 7.3: Monitoring network traffic with Database Firewall

Select * from EMPLOYEES
where employee_id='210'

Allow-list policy
Allow

Block
DatabasesDatabase

Firewall

Select * from EMPLOYEES
where employee_id='210' OR 1=1;
truncate table EMPLOYEES;--

Legitimate
users

Unauthorized
access, e.g.
SQL-injection

Database Firewall

The Database Firewall inspects the SQL traffic on the network going into the database and determines with
high precision whether to allow, log, alert, substitute, or block the SQL statement before it reaches the database.
Database Firewall events are stored in the Audit Vault Server and are consolidated with the audit data, giving
customers a unified view into all activities. The Database Firewall is covered in detail in the next chapter.

AVDF reports are designed to provide detailed information on the audit activities and network events. The
reports cover a wide-range of activities, including, all audit and network activity, privileged user activity, schema
changes, entitlement changes, stored procedure modifications, before/after data value changes, sensitive data
access and login failures. Table 7.1 below shows a summary of the different reports in AVDF followed by some
sample reports.

Reports, alerts and notifications

Report type Description

Activity A set of reports that track database access activities such as audited SQL statements,

application access activities, and user login activities. Some typical

reports are:

• All audit and network activity

• Data Modifications

• Before and after values of the modified data

• DDL activity

• Failed Logins

Alerts Alert reports display the raised alerts and their status.

| 76Securing the Oracle Database

Report type Description

Stored Procedure Audit A set of reports that help you track the changes made to the stored procedures, such

as creation, modification, and deletion.

Oracle Database Firewall For database Targets that you are monitoring with the Database Firewall, this set of

reports give detailed event information about the SQL traffic. For example, you can see

details of statements that had warnings, or were blocked, according to the policy. You

can also see information about the SQL statements sent to these databases.

User Entitlements A set of reports that capture user access and privileges for Oracle Database targets.

For example, reports provide information pertaining to user accounts, user privileges,

object privileges and privileged users. Using AVDF, a baseline report can be created

and changes from the baseline can be analyzed, making it easier for security and DBA

personnel to monitor changes.

User Correlation For Oracle Database targets running on Linux, these reports let you correlate events

on the database with the original Linux OS user. This is useful in cases where this user

executes a command on the database as another user by using su or sudo.

Database Vault Activity If the Oracle Database targets have Database Vault enabled, the Database Vault

Activity report shows Database Vault events, which captures policy or rule violations

and unauthorized access attempts.

Anomalous Activity Reports pertaining to users that are new users or dormant users accessing the system,

or users accessing the system from IP addresses not seen before.

Table 7.1: Built-in reports in AVDF

| 77Securing the Oracle Database

Figure 7.4: All activity report

Figure 7.5: Data modification before/after values report

| 78Securing the Oracle Database

AVDF provides additional support for Oracle databases. This includes provisioning audit policies, monitoring
entitlement changes, before/after data value changes and tracking stored procedure changes.

Audit policies for Oracle databases

Deciding what to audit depends upon an organization’s policies. It is common to audit sensitive data access,
privileged user activity, and security-relevant events. Database threats may also come from internal users.
Oftentimes, certain database users are granted powerful system privileges. Their actions warrant greater
scrutiny and constant monitoring. Audit policies need to be selective enough to reduce unnecessary audit
records and effective enough to meet an organization’s audit goals.

Auditors access reports interactively through a web interface, PDF, or XLS files. Report columns can be sorted,
filtered, re-ordered, added, or removed. PDF and XLS reports can be scheduled to be generated automatically.
Reports can also be defined to require signoff by multiple auditors. Users can create new or customize existing
PDF and XLS report templates to meet customization requirements.

AVDF schema is open and documented, allowing users to retrieve the audit data from AVDF and use their
reporting tool of choice.

Depending on the alert policies configured, AVDF can raise alerts based on the audit and network events
that come from the Audit Vault Agent and Database Firewall. Alerts can be raised on multiple conditions. For
example, there may be multiple failed login attempts occurring across multiple databases in a certain amount
of time, indicating a possible brute force attack. Alerts can not only be displayed on the Audit Vault Server
dashboard, but also can be sent to the user as an email, or to syslog server.

Additional support for Oracle databases

Figure 7.6: Failed login report

| 79Securing the Oracle Database

Figure 7.7: Easy audit policy provisioning

AVDF makes it easy to provision audit policies by providing recommended audit policies for Oracle, which the
user can enable through single click. In addition to the AVDF recommended pre-defined policies, compliance
related policies such as CIS and STIG are also provided.

When the pre-seeded audit policies are enabled, these policies are created in the Target database without the
user having to write SQL code for defining these policies.

Monitoring entitlements for Oracle Database

Tracking changes in entitlements is important for many reasons such as identifying users with improper access
to certain tables, and rectifying improper grants of roles or privileges.

For Oracle databases, AVDF can be used to create a baseline of entitlements and to review any further changes.

Before/after data value changes

Before and after value collection is extensively used in the healthcare and financial services industry,
as well as many other regulated industries. With before and after value collection, auditors can track the
lifecycle of individual data attribute changes—an important component of many data
governance requirements.

If a data value is changed, AVDF records the old value (before the change) and the new value (after the change),
along with who changed it and when it was changed.

AVDF 20 includes a restricted license of Oracle GoldenGate and uses Oracle GoldenGate Integrated Extract
process for before and after value collection.

| 80Securing the Oracle Database

Monitoring Oracle stored procedures

Stored procedures contain some of the important business and/or data access logic. Attackers sometimes
modify these stored procedures to create backdoors to the database. Therefore, it is important to constantly
monitor these stored procedures to identify any changes.

AVDF can periodically check the Oracle databases for any new stored procedures or any updates to stored
procedures. The reports can be reviewed for any changes.

Organizations need a single pane of glass view into all database activities, regardless of where the database
resides. Deploying AVDF for both on-premises and cloud database targets provides several advantages
including consistent policies, unified reporting, and common alert management. Existing alert configurations
and data retention policies can be applied to cloud databases. By monitoring the databases in the cloud,
organizations can have an independent view of the events on their databases and ensure that the cloud vendors
cannot modify their data.

Hybrid cloud support

Figure 7.8: Hybrid cloud support

Oracle Cloud

On-Premises

Audit Vault Agent

Audit Vault Server

Audit Vault Agent

Audit Vault Agent

Users

Applications
Alerts

Reports

Policies

!

| 81Securing the Oracle Database

Oracle Audit Vault And Database Firewall is a complete database auditing and network activity monitoring
solution that combines native audit data collection with network-based SQL traffic capture. It includes a highly
scalable enterprise quality data warehouse, audit data collection agents, Database Firewall, powerful reporting
and analysis tools and alert framework. Users can leverage the recommended policies to quickly enable
database auditing with a single click.

The next chapter will discuss the Database Firewall and how you can use it to monitor and block SQL traffic
before it is reaches the database.

Summary

 | 82Securing the Oracle Database

Network-based SQL
monitoring08

| 83

The majority of data breaches are caused by misused insider credentials, compromised clients, or through
SQL injection attacks coming through the web applications. SQL injection continues to be the number one
application security risk on the Open Web Application Security Project Top 10 list for several years. There are
many situations where we need to monitor, detect, and block such attacks before the SQL statement reaches
the database. Network-based SQL traffic monitoring is ideal to deal with these threats.

This chapter describes common network attack vectors used to compromise the application data and how by
using the Oracle Database Firewall, a component of Oracle Audit Vault and Database Firewall, organizations can
monitor the SQL traffic to the database and prevent SQL injection. Database Firewall can also log the SQL traffic
and raise alerts based on policies defined.

Need for network-based SQL monitoring

Traditional perimeter-focused network firewalls used to be one of the ways to stop unwanted traffic to the
databases. However, network firewalls are not adequate as they just allow or deny network communication to
and from a certain port and IP address. They typically cannot evaluate the actual content of the packets and
use full SQL context for access control. Moreover, the blurring network boundaries and the increasing insider
threats have rendered traditional network firewalls inadequate.

Another approach to block network attacks is to add protection at the application level. This can be done
by improving user authentication, enforcing least privilege, using prepared statements, avoiding dynamic
queries, and performing input validation. Although these methods provide a stronger level of protection and
should be practiced, minor gaps in development or configuration controls can easily introduce vulnerabilities.
Organizations need a database security technology that can analyze the SQL and take context specific actions
even if there are minor gaps in the application tier.

One of the biggest risk to databases is from attacks that come directly from the web. Hackers can use SQL
injection techniques to insert a malicious SQL statement via the input data to the application. If the input data
is not validated properly by the application and the input data is used to dynamically construct a SQL query,
the malicious SQL gets executed on the database.

For example, if your application UI has a button called “Check Employee” along with an input text for providing
employeeId as the parameter, the application tier may generate a query of the type “select * from EMPLOYEES
where employee_id=‘<InvalidatedInput>’”. A normal web user may just type the employeeId ‘210’ but a
malicious user can force the application to execute a different SQL query by injecting a doctored value such as:

Need to monitor and block network attacks

210’ OR 1=1; truncate table EMPLOYEES;--

Instead of the simple SELECT query, we now see how the malicious input data can change the query
parameters, resulting in the database returning all the data and truncating the table. This poses a massive risk
to the organization because the malicious SQL statement is executed with all the privileges of the application
account with full access.

 | 84Securing the Oracle Database

Oracle Database Firewall, a component of Oracle Audit Vault and Database Firewall, acts as the database’s first
line of defense on the network, monitoring SQL traffic and enforcing expected database access behavior, while
helping prevent SQL injection, application bypass, and other malicious activities from reaching the database.
A single Database Firewall can be used to protect multiple databases of different type from a central location.
Oracle Database Firewall monitors enterprise databases including Oracle, MySQL, Microsoft SQL Server, SAP
Sybase and IBM Db2.

Oracle Database Firewall is a multi-stage analysis engine that inspects SQL traffic to the database and
determines with high precision whether to allow, log, alert, substitute, or block the SQL as specified in the
policy. The SQL traffic goes through different stages of analysis in the Database Firewall, including checks for
originating IP address, database/OS user name, client program name, SQL statement category (DDL, DML, etc.),
database tables being accessed and the actual SQL statements. All of this information can be used to determine
whether the SQL statement should be logged, alerted, allowed to go through, or blocked.

Oracle Database Firewall

Figure 8.1: Oracle Audit Vault and Database Firewall

Users

Applications Network
events

Reports

Alerts

Allow

Block

Policies

Audit Vault Server

Database Firewall Databases

Oracle, SQL Server, IBM Db2,
SAP Sybase, MySQL

X

!

Such SQL injection attacks are difficult to catch at the database level because the SQL looks like any other
SQL that the user could be executing. Organizations need a simple but effective way to detect such attacks,
raise alerts when needed, and block such attacks from reaching the database. Such monitoring should
typically be used in conjunction with database auditing that captures local database activity and complete
execution context.

| 85Securing the Oracle Database

Oracle Database Firewall captures not only the SQL statement category and database tables being accessed, but
also session context information such as database user name, OS user name, client IP address, client program
name, table name, etc. Database Firewall policies can be built using this information.

One simple way to look for malicious SQL could be through regular expressions, but those are very easy to
bypass. They can also lead to high rates of both false positives and false negatives, creating unnecessary
alerts or letting bad traffic go in. Oracle Database Firewall uses a SQL grammar-based engine to parse the
SQL and recognize the equivalent allowed statements. It groups these SQL statements with the same
grammatical structure into “clusters”. For example, a SQL query that searches for a specific order number
234324 is essentially the same as the one that searches for another order number 333221 and both these
statements would belong to the same cluster. Understanding the similarity between different statements,
filters millions of SQL statements down to just a few dozens. Using these SQL clusters, firewall policies can be
defined that include both allowed SQL (allow-list) and disallowed SQL (deny-list). The SQL statements that do
not belong to the allow-list or the ones that belong to the deny-list could indicate a possible attack.

Figure 8.2: Monitoring SQL network traffic with Oracle Database Firewall

Select * from EMPLOYEES
where employee_id='210'

Allow-list policy
Allow

Block
DatabasesDatabase

Firewall

Select * from EMPLOYEES
where employee_id='210' OR 1=1;
truncate table EMPLOYEES;--

Legitimate
users

Unauthorized
access, e.g.
SQL-injection

| 86Securing the Oracle Database

Policies would be driven by objectives such as the need to ensure trusted
application path access to the database, creating an allow-list to pass
specific types of SQL and blocking or alerting on everything else. At each
stage of the Database Firewall policy engine, conditions defined in the policy
are evaluated, and if there is a match, user specified actions such as alerting,
logging, blocking or allowing the SQL statement to pass through to the
database for execution, can be taken. If there is no match, the SQL statement
is passed to the next evaluation stage.

At the 1st stage, rules relating to connection session context are evaluated,
followed by SQL Statement rules and then the database object rules.
Finally, the default rule is applied if there is no match found in the
earlier stages.

Oracle Database Firewall policies

Session context

SQL

SQL statement

Default rule

Database objects
SQL statement type

DB user IP address

OS user

SQL cluster set

DB client

Pro�le

Figure 8.3: Multi-stage Database FirewallSession context rule

Session context rules do not look at the specific SQL statement; instead it uses database session attributes such
as IP address, database user name, OS user name, and database client program name to make a decision.

Session context rules allow SQL traffic from trusted application paths without requiring them to go through
further processing. For example, you may only want to allow SQL requests from a trusted set of allow-list client
IP address range, or block SQL requests originating outside of an expected IP address range.

Once matched, actions can be taken on the SQL traffic, such as blocking, alerting, or logging. SQL statements
originating from sessions that do not match the rule are sent to the second stage of the Database Firewall
for processing.

Session content

Rule match

SQL

Actions
Logging level
Threat severity

DB user

IP address

DB client

OS user

Figure 8.4: Session context rules

| 87Securing the Oracle Database

Database object rules

Database Object rules are used to block or allow specific types of SQL statements (DML, DDL, etc.) on specific
database objects such as tables and views. These rules are often used for controlling access to sensitive
application database objects. For example, you may want to allow only SELECTs on application tables,
but block the SQL modifying sensitive tables.

SQL statement rule

The second stage uses a SQL grammar based engine to parse the SQL statement, map it to a cluster, and take
actions if the cluster set and profile match. Note: A cluster set is a user-defined group of clusters (a cluster is
a group of SQL statements identified as being similar by the Database Firewall) and profile is a user-defined
combination of IP address, database user names, OS user names and database client names.

If the incoming SQL statement matches with any of the SQL clusters and profile defined in the SQL statement
rule, then actions as specified in the ‘SQL Statement rule’ are taken, if not, the SQL is sent to the next stage for
processing. Using this rule, allow-list or deny-list based policies can be created. The allow-list of SQL clusters
can be automatically created by sending known/expected SQL statements generated in a test or QA system,
through the firewall. Database Firewall clusters these SQL statements into similar sets of SQL. For example, you
could create an allow-list of SQL requests from a trusted set of application users. You could also allow database
access for known set of SQL requests from trusted privileged users using a tool such as Oracle SQL Developer.
SQL traffic that does not match is sent to the third stage, the Database Object rule.

SQL Statement

Rule match

SQL

Actions
logging level
threat severity

 SQL cluster set

Pro�le

Actions
Logging level
Threat severity

Figure 8.5: SQL statement rules

| 88Securing the Oracle Database

Default rule

The default rule is executed if the SQL statement does not match any of the other rules (Session context, SQL
statement, Database object). It is useful to log these statements so you can analyze these statements and see
why they did not match the Session content, SQL statement or Database object rules and if needed, modify
the rules accordingly. In situations when the SQL statements change, or there are new users in the system or
new applications, having a default rule ensures that you can capture any new traffic for which you have not yet
created a firewall rule and decide how to process it.

The Database Firewall can be deployed in various modes, as shown in the table below.

Oracle Database Firewall deployment modes

Table 8.1: Deployment modes

Database Objects

SQL Statement
Rule match

SQL

DML DDL

Actions
Logging level
Threat severity

Figure 8.6: Database object rules

| 89Securing the Oracle Database

The Database Firewall can be deployed in the following modes:

• Proxy mode: In this mode, all the traffic to database server is routed through the Database Firewall.
Database clients need to be reconfigured so that they connect to the Database Firewall which processes
the traffic and based on the policy, forwards it to the database, blocks it or raises alerts on it.

• Monitoring in out-of-band mode: In this mode, Database Firewall listens to the network traffic sent to
the database. There are several technologies such as span ports, port replicators, etc. that can be used to
send a copy of the database traffic to the Database Firewall. Database Firewall can monitor and alert on
the SQL traffic, but it cannot block it.

• Monitoring with Host Monitor: Host Monitor is deployed on the same machine as the database and
captures SQL traffic going to the database. The Host Monitor captures the traffic sent to the database and
then securely forwards it to the Database Firewall. It is also easier to deploy the Host Monitor when there
are several network paths to the database. It can monitor and alert, but not block the SQL statement.

Figure 8.7: Oracle Database Firewall deployment architecture

Users

Applications

Alerts

Proxy

Out-of-band
Network events

Host Monitor

Reports

Policies
Audit Vault

Server

Database Firewall

X!

| 90Securing the Oracle Database

The Database Firewall sends network events and alerts to the Audit Vault Server, and this information can be
viewed in the Database Firewall reports. For example, the Database Firewall reports display details of statements
that raised alerts or were blocked. They also provide information on the SQL traffic to the databases such as
SQL statement type (DDL, DML, etc.), database username, OS username, client application name, client IP
address, Database Firewall action taken, and the SQL statement executed.

In addition, the Database Firewall policies can be configured to generate alerts and these alerts can be viewed in
the AVDF reports, sent to an email recipient, or sent to the syslog server.

Oracle Database Firewall reports

Figure 8.8: Database Firewall blocked statements

| 91Securing the Oracle Database

The increasing number of attacks on databases via SQL injection or misused insider credentials have made
network-based SQL traffic monitoring an important component of an organization’s overall security architecture.
Oracle Database Firewall provides a sophisticated next-generation SQL grammar analysis engine that inspects
the SQL statements on the network going to the database and determines with high accuracy whether to allow,
log, alert, substitute, or block the SQL. Network-based SQL traffic monitoring introduces near-zero latency
and has zero overhead on the monitored database. It requires no modification to the databases, and monitors
multiple heterogeneous database systems.

Oracle Database Firewall supports allow-list and deny-list based policies to enforce trusted application path
access to data. Policies can be applied on client program name, database user name, SQL types, table names,
OS user name, and IP address.

The events captured by the Database Firewall events are sent to the Audit Vault Server, where users can view
reports containing database audit events and network events to get a complete picture of the security and
compliance status of their environment.

Summary

 | 92Securing the Oracle Database

09 Data-driven application
authorization

| 93

The easiest way to attack a database is through the browser accessing applications that connect with the
database. The attacker could take advantage of the SQL injection vulnerabilities within the application, or
any inconsistencies in the way the application authorizes its users. Today’s applications have become highly
complex with different authorization policies based upon the session attributes, user attributes, organization
attributes, their role, and so on. Implementing appropriate access control checks at all the right places is quite
cumbersome, and difficult to maintain over the lifecycle of the application.

Application users should have access to only the tables containing data they need to perform their tasks.
However, when an object privilege such as SELECT or INSERT is granted to a database user for a specific table,
the privilege provides access to everything within that table. Database tables for most applications, however,
contain much more data than any single application user should be able to access. For example, a customer
should be able to review their records in a support application, but they shouldn’t be able to see other
customer records. A help desk technician needs to see tickets assigned to them, but not other open tickets.
Sales managers need to see sales opportunities for their direct reports, but not for other sales staff. These
are all examples of fine-grained authorizations where the application user needs to be restricted to only the
relevant rows and columns.

The following graphic shows a table with both sensitive and non-sensitive HR data. Nancy is able to see her
sensitive data and also the salaries of her direct reports. But all other sensitive data is hidden.

Applications typically manage and enforce their own user authorizations, but these authorizations do not apply
to other applications accessing the same database tables, or a reporting tool with direct access to the database.

This chapter discusses how applications have typically handled this fine-grained authorization problem. The
challenge is implementing these policies in an easy to understand way, without coding these rules within the
application itself.

Controlling access to application data

Figure 9.1: Example: Fine-grained access control applied to a table

Name Manager SSN Salary Phone number

Adam Fripp Steven Stiles 650-123-4234

Neena Kochhar Steven Stiles 650-124-8234

Nancy Greenberg Neena Kochhar 000-51-4569 120300 515-123-4567

Luis Popp Nancy Greenberg 69000 515-123-4234

John Chen Nancy Greenberg 82000 515-123-8181

Daniel Faviet Nancy Greenberg 9000 515-123-7777

 | 94Securing the Oracle Database

Consider the EMPLOYEE table in the HR sample table earlier where it might be appropriate to allow all users
to view the basic information about employee names and office phone numbers, but not information about
SALARY and SSN columns. Managers should be able to access the SALARY column for their direct reports.
It is common for applications to write complex application authorization code to determine which rows and
columns each user has access to, and under what conditions. An extra database schema or set of tables is
typically dedicated to the user and role authorization information, which is then used to build the SQL that is
generated for a particular application user request.

Some common problems with this approach:

• An application developer has to write this complex code, and ensure that the application logic is applied to
all scenarios where the application user needs to access a given table.

• Every application accessing the same data must re-implement their version of the authorization policy as
the database itself knows nothing about this security policy.

• Tools that are given direct access to the database (analytical tools, SQL*Plus...) have full unfettered access
to the data.

• Database audit frequently only sees that an application account has made an SQL query—not the actual
end-user.

Oracle Database addresses this challenge with several technologies known collectively as Data-Driven
Authorization. Centralizing these application authorization controls in the database simplifies and accelerates
application development, and provides a single set of policies to define and maintain.

Oracle introduced the well-known feature called Virtual Private Database (VPD), an automated predicate-based
row-filtering security technology, twenty years ago—at that time, it was the only database with this innovative
capability. Following that, Oracle Label Security (OLS) was introduced to automatically filter rows based upon
data and user labels. The most recent technology in this line-up is Real Application Security (RAS) introduced
with Oracle Database 12c which provides direct support for application privileges, making it much easier to
develop secure applications. We will now look at each of these technologies in more detail.

Virtual Private Database (VPD) enforces row and column level security policies based on the end user-
context set by the application. Using VPD, an application-defined PL/SQL function is executed to generate
the appropriate WHERE clause each time the table is accessed so that the SQL statement only returns the
authorized rows and columns.

With VPD, it is possible to provide different types of access to different rows depending on the operation the end
user is performing. This is useful, for example, to allow users to view information about all employees but only
update their own rows. A VPD policy can include sensitive columns so that only certain end users under certain
conditions can get access to its values while others get null values.

Challenges with application authorization

Controlling data access using Virtual Private Database

| 95Securing the Oracle Database

Another method of fine-grained access control involves attaching a label to each data item that describes its
sensitivity or importance. In many government and corporate environments, a document might be labeled
as TOP SECRET or INTERNAL USE ONLY, and then only people who have a sufficiently high “clearance” level
are allowed access to those documents. Typically the labels reflect an ordered set of levels, and each user is
assigned a maximum level that he or she is permitted to access. This capability when attached to the rows of
a table, allows the database to inherently know which data is sensitive and restrict access to it accordingly.

Oracle Label Security (OLS) simplifies the process of assigning labels to data and users and enforces access
control based on those labels. Associated with every row in a table protected by OLS is a label that indicates
the sensitivity of the data. The label for each row can be set explicitly based on business logic, but more often
the system sets the label automatically based on the label of the application or user session that inserted the
row. The label of the user session, in turn, is calculated from a variety of factors, including the label assigned
to the user, the session, the type of connection to the database, and so on. A label can be thought of as an
extension to standard database privileges and roles. A label can be associated with a database user and starting
with Oracle Database 12c Release 2, a label can also be associated with application users supported by Real
Application Security (discussed later in this chapter).

The format of the OLS label is expressive enough to accommodate virtually any data classification scheme
in commercial or government organizations. Every label includes a level, ordered from lowest to highest, to
indicate the overall sensitivity of the data. Within a level, optional components called compartments and groups

Controlling data access using data labels

With VPD, no matter how the application accesses the table, this fine-grained authorization policy is always
executed. In this example, the user is allowed to access HR.EMPLOYEES table data only if the record is part
of DEPARTMENT_ID = ‘80’. Additionally, the SALARY data is hidden. When users execute such a generic
query without specifying any condition or WHERE clause, they still only get the rows and columns that they
are authorized to get. This significantly simplifies application development as the developer does not have to
think about how they need to change the query depending upon the user.

Figure 9.2: VPD fine-grained access control policy automatically keeps salary data hidden

| 96Securing the Oracle Database

Labels are represented by the three components separated by a colon (:). A data label that is considered
‘Sensitive’, with ‘Finance’ data for ‘Store1’ would be represented as Sensitive:Finance:Store1. Pricing data
for Store1 would be labeled Sensitive:Pricing:Store1. For the Store1 Marketing manager who needs pricing
information to create weekly sales newspaper inserts and emails, they will have the Pricing compartment
as part of their user label. We will review how labels work by starting the example with the group component,
then adding in compartment and level.

can be used to segregate information based on attributes such as project or department. Compartments are
used to segregate and compartmentalize data such as special project information. Groups provide a convenient
way to represent hierarchical authorization based on geography or organizational structure.

The figure below shows an example of a worldwide retail store classification scheme using all three label
components. Two levels are defined: Highly Sensitive and Sensitive. Only users with the Highly Sensitive label
are allowed to access the quarterly financial data and reports which have not yet been released. A Finance
compartment has been defined to only allow access to those with the need to see financial data. Upcoming
pricing changes are also sensitive so a Pricing compartment protects pricing data. Groups are used to represent
the retail stores’ geographic hierarchical structure.

Figure 9.3: Oracle Label Security components: levels, compartments, groups

Figure 9.4: Using the group component

Highly sensitive
WW

US Europe

Store
1

Store
2

Store
3

Store
4

Sensitive

Finance

Pricing

Levels Compartments Groups

Data Group component label

Store 1 Finance ::Store 1

Store 2 Marketing ::Store 2

Worldwide Inventory ::WW

Access

Store 1 Manager US Regional Director

User label

Group = Store 1

User label

Group = US

Access

Access

| 97Securing the Oracle Database

In the label design, users in each store can only see data regarding their store due to the restrictions imposed
by the group label component. Users with ‘Store1’ group label component can only see data that has the ‘Store1’
group data label. A US regional manager would have ‘US’ as their group label and this allows them to see all the
elements that belong to US (Store1,Store2) since the US label is defined hierarchically over Store1 and Store2
in OLS.

The retail company required that financial and pricing data should only be seen by staff that needs to see the
respective data. ‘Finance’ and ‘Pricing’ compartments were created and financial and pricing data records were
updated with the appropriate compartment label (example below). Users were reviewed to see who should
have access to the compartmented data. The Store1 Marketing Manager needs to see pricing data to build sales
material for the weekly store sales events and the Store1 Manager needs to see both pricing and financial data
for Store1. But neither manager can see finance data for the US group.

Since this is a public company, all non-released quarterly financial data and reports are considered highly
sensitive. All data was considered ‘Sensitive’ except for the quarterly financial data which was ‘Highly Sensitive’
with the ‘Finance’ compartment and ‘WW’ group. Only users with the level ‘Highly Sensitive’
with the ‘Finance’ compartment and group ‘WW’ could see the data.

For the user to access data, their user label must meet requirements for all three components (level,
compartment, and group):

• Be at the same or higher level than the level for the data. For example, a user with Sensitive level label
can access data that is labeled Sensitive, but not Highly Sensitive.

• Include all the compartments in the data label. A data label with the Finance compartment will require a
user with the Finance compartment.

• Include at least one group listed on the data label or have a group label that hierarchically contains
one of the data label groups. If the data label includes Store1, a user with Store1, US or WW group label
could view it.

Figure 9.5: Using the compartment and group components

Data Compartment, Group label

Store 1 Finance :Finance:Store 1

Store 1 Pricing :Pricing:Store 1

Store 1 Inventory ::Store 1

US Finance :Finance:US

Access

Access

Access

Store 1 Manager Store 1 Marketing Manager

User label

Compartment = Finance, Pricing
Group = Store 1

User label

Compartment = Pricing
Group = Store 1

Access

Access

| 98Securing the Oracle Database

While OLS has all the functionality to meet government, military and intelligence agency requirements for
labeling, commercial organizations have also found label security to simplify their data access authorizations.
In the commercial use case above, a retail store used to have individual applications and databases for each
store. Consolidated reporting was difficult to do along with a high price tag for maintaining many duplicate
systems. Label security was used to consolidate the data into a single database while maintaining the strong
controls on data access.

The key advantage of using Oracle Label Security is a full authorization infrastructure with mediation and
simplified administration. OLS provides the same type of row-level access control as VPD but implements
the concept and management of user and data levels, compartments, and groups which map closely to many
real-world use cases and does not require the administrator to create the PL/SQL policy function to enforce
the access rules. Once an access control model is in place for data and user labels, access control is uniformly
enforced everywhere without requiring explicit decisions about who should be able to access the data in
each individual table. OLS is recommended when the data access logic can be expressed using the data and
user labels.

Figure 9.6: Using the level, compartment, and group components

Data Compartment, Group Label

WW Upcoming Financial Highly Sensitive:Finance:WW

Store 1 Pricing Sensitive:Pricing:Store 1

Store 1 Inventory Sensitive:Store 1

US Finance Sensitive:Finance:US

Access

Access

Access

Access

Chief Financial O�cer Store 1 Manager

User label

Level = Highly Sensitive
Compartment = Finance, Pricing

Group = WW

User label

Level = Sensitive
Compartment = Finance, Pricing

Group = Store 1

Access

Access

We saw earlier that Virtual Private Database (VPD) controls data access by users. In modern three-tier
applications, the application end users do not interact directly with the database. Database queries and updates
are typically performed by a single database user that represents the entire application rather than
the individual end user.

Because the end user’s identity is unknown to the database, per-user access control policies must be enforced
by the application instead. Besides requiring extra software development in the application, this approach
can lead to inconsistent enforcement, especially when there are elements of the system that can bypass the
application and connect directly to the database.

Introduced in Oracle Database 12c, Real Application Security (RAS) provides the next generation of application
access control framework within the database, enabling three-tier and two-tier applications to declaratively
define, provision, and enforce their access control requirements in the database layer.

Controlling data access using Real Application Security

| 99Securing the Oracle Database

RAS introduces a policy-based authorization model that recognizes application-level users, privileges,
and roles within the database, and then controls access on both static and dynamic collections of records
representing business objects. RAS overcomes the maintainability, scalability and security issues faced by
complex VPD policies, and also provide support for common application patterns like master-detail tables
and temporary assignments.

With RAS, the identity of the application end user is securely propagated to the database so that access control
policies can then be enforced within the database itself. The application can create any number of application
user sessions and switch between them while using a single connection from a connection pool to the database.
Note that the application user, however, does not have its own schema to store data objects or dedicated
connection to the database as a regular database user would. RAS controls can also enforce access control
policies on database users.

RAS enforces fine-grained restrictions on access to columns and rows within a database table, just like VPD.
However, RAS uses a more general, declarative syntax to specify these restrictions. First, the administrator
creates one or more “data-realms” for each table to be protected. Each data-realm identifies an applicable
subset of the rows within the table using the same syntax as the WHERE clause in a SQL query. Then an access
control list (ACL) is attached to each data-realm to identify which users or roles have permission to perform
which operations on the data within that data-realm.

The example in Figure 9.7 below shows three different data-realms. The ‘public’ data-realm includes all
employee records. The ‘self’ data-realm is dynamic and only includes the user’s record. The ‘manager’
data-realm is also dynamic and includes all the employees that report to the user.

Figure 9.7: Controlling data access with RAS

Name Manager SSN Salary Phone
number

Adam Fripp Steven Stiles 650-123-4234

Neena Kochhar Steven Stiles 650-124-8234

Nancy Greenberg Neena Kochhar 000-51-4569 120300 515-123-4567

Luis Popp Nancy Greenberg 69000 515-123-4234

John Chen Nancy Greenberg 82000 515-123-8181

Daniel Faviet Nancy Greenberg 9000 515-123-7777

Public
Data-Realm

Manager
Data-Realm

Self
Data-Realm

Select SSN
Privilege

Select Salary
Privilege

| 100Securing the Oracle Database

For each of these data-realms, an access control list (ACL) is attached that specifies who can access that data-
realm and under what condition. For the ‘public’ data-realm, all employees have the ‘SELECT’ privilege only.
All non-protected data would be visible to any employee. However, since SSN and Salary data is protected, it
doesn’t show up since it’s not included in the ACL for the ‘public’ data-realm. “The ‘self’ data-realm, seen below
in the graphic, is associated with an ACL to view SSN (Authorize SSN) and Salary (Authorize Salary) data so an
employee (role) can view their own sensitive data.

A manager can view the salary of their reports using the ‘manager’ data-realm which has an ACL that allows
the Salary data to be shown. The ‘self’ and ‘manager’ data-realms are dynamic—that is, RAS returns data
from appropriate rows and columns based upon the application user identity for that particular session.
Furthermore, RAS allows the database to enforce additional security policies that are unique to each application.
The application can define its own privileges in addition to the usual SELECT, INSERT, UPDATE, and DELETE
to represent operations that are specific to that application, such as vacation approval, check approval, and
creating invoices. The administrator can specify that access to a column requires the user to have a particular
application-defined privilege (i.e., UPDATE_SALARY, VIEW_SSN).

Connecting applications through the RAS Java interface to the database is more secure than using traditional
connections to the database. A traditional application connection to the database needs to include every
privilege and role that every application user needs to run the application and typically including those that are
needed to install and maintain the application.

These highly privileged accounts are a top target for cyber criminals looking to get into a database. The
RAS application user connection to the database uses a minimally privileged account so even if the account
is compromised, attackers could not use it to access sensitive data. RAS data-realms, ACLs, and policy
management can be done completely through the RAS management PL/SQL API.

With built-in support for propagating application users’ sessions to the database, Oracle RAS allows security
policies on data to be expressed directly in terms of the application-defined users’ roles and data operations.
The RAS security model allows uniform specification and enforcement of access control policies on business
objects irrespective of the access path. Using declarative access control policies on application data and
operations, Oracle RAS enforces security close to the data and enables end-to-end security for both three-tier
and two-tier applications. The declarative model for RAS is much simpler to maintain and extend than with VPD.

Figure 9.8: Access control list (ACL)

Access control list RoleData-realm

Update phone number EmployeeSelf

View record

Authorize salary

Authorize SSN

| 101Securing the Oracle Database

Hackers and malicious insiders can take advantage of weak application authorization policies if they are
implemented inconsistently and improperly. Oracle authorization technologies can centralize and secure
all database clients including applications, analysis tools and command-line tools. Centralized application
authorization can also help accelerate application development and reduce the complexity of maintaining
and upgrading multiple authorization policies in different applications.

Summary

 | 102Securing the Oracle Database

Need for security
assessment10

| 103

Today’s systems have become very sophisticated with many configuration settings. As recent data breaches have
demonstrated, it is critical to have properly configured and secure systems. A human error could potentially leave
your database open to everyone, or an attacker could maliciously exploit vulnerabilities in configuration to gain un-
authorized access to sensitive data. By overlooking basic security controls, organizations might end up losing their
customer names, addresses, date of birth, account information, and other personal data impacting their reputation
and bottom line. It is important to periodically scan the database to ensure that it is securely configured, and to
remediate the situation if there is a deviation.

Many regulations, such as EU GDPR, PCI DSS, Sarbanes-Oxley and various breach notification laws, promote
security assessments as a key part of reducing IT risks. Various organizations such as the Center for Internet
Security (CIS) and U.S. Department of Defense have recommendations for security configuration best practices.
It is critical to have a solution that can perform an assessment, taking into consideration recommendations from
different regulations and security frameworks, along with vendor best practices.

This chapter describes how to quickly evaluate your database security posture and come up with a strategy to keep
your databases secure.

Attackers take their time to prepare an attack and usually spend considerable time doing reconnaissance.
They use several tools that automate the discovery of databases, open ports, and vulnerabilities; automate
application and SQL injection attacks; and execute brute force password attacks. Once they finish probing,
they assess the weakest links and then determine the next steps. In essence, the attackers are evaluating your
current security status to find out the easiest way to get to the data.

• Which version is the database? What are the known vulnerabilities? Have those been patched yet?

• Are there any known users with default or easy to guess passwords?

• Who are the privileged users on this database? Is there a way to escalate privileges from regular users?

• Which packaged applications are running on this database? Are those running with all-powerful privileges?

• Is auditing on? For whom? Which conditions?

• Is the data encrypted? If not, can we get access to the underlying storage or a backup?

Evaluate and assess database configuration

 | 104Securing the Oracle Database

All these questions are inside the hacker’s mind, and the answers help them come up with a plan to break into
the database and steal the data. Organizations, as the owners of the data, need to do similar thinking to harden
the database’s security posture.

Properly hardening and securing a database is not an easy task. It needs an understanding of the users and
their roles, the data and its sensitivity, the security configuration parameters, the enabled features, knowledge
about the database attack vectors, and finally the available security controls to protect the database. Because
the Oracle Database is highly customizable, assessing security also needs an understanding of the impact of
configuration choices on the overall security.

Here are some key considerations for protecting your databases:

• Almost all databases hold sensitive data, but the level of importance may differ. For example, the date of
birth may be more sensitive than your email address. It is important to find out which databases contain
what type of sensitive data so that controls can be put in place accordingly.

• Common database vulnerabilities include unpatched systems, poor application design, weak user
credentials, excessive privilege grants, lack of a trusted path to data, no separation of duties, no encryption,
and inadequate auditing.

• Security configuration parameters are tightly related to how the database behaves and requires an
understanding of what the parameters are, what they do, the impact of changing them, and
their dependencies.

• Not all database users are equal. Apart from the DBAs, several other actors/processes need to interact
with your data through a database user account—the application itself, application administrators, security
administrators, and others like service accounts, batch programs, etc. Clearly identifying the different types
of database users and the different types of activities they need to execute on the database will help to
properly manage privileges and roles and implement the principle of least privilege.

• Not all databases are created equal. Database design rarely takes into consideration the controls needed
to protect sensitive data. The database might enforce a certain password complexity factor but may not
protect customer table data out-of-the-box. Attackers exploit this “vulnerability” that comes with installing
a system using default settings.

We now describe different software tools and services that can help you assess the security of your databases.
Such tools include Database Security Assessment Tool, Oracle Database Life Cycle Management Pack, and
Oracle Data Safe cloud service.

| 105Securing the Oracle Database

The Oracle Database Security Assessment Tool (DBSAT) identifies potential sensitive data and areas where your
database configuration, operation, or implementation introduces risk. DBSAT collects and analyzes different
types of data from the database. DBSAT further recommends changes and controls to mitigate those risks.

Apart from database and listener configuration, DBSAT collects information on user accounts, privileges
and roles, authorization control, separation of duties, fine-grained access control, data encryption and key
management, auditing policies, and Operating System file permissions. DBSAT applies rules to quickly assess
the current security status of a database and recommends best practices. Updated best practices rules are
delivered periodically with new versions of the tool.

One challenge that comes with doing database security assessments and vulnerability assessments is that the
data about the vulnerabilities becomes unmanageable. A lot of findings are presented, and it is hard to find a
way to prioritize and act upon critical findings first.

DBSAT not only scans the database for weaknesses and vulnerabilities but also indicates the priority level to
help prioritize work on the most critical weaknesses first. DBSAT also provides high-level details, along with
specific recommendations for each of the issues, making it simpler and quicker to act.

DBSAT is a free tool available to all Oracle customers so that they can quickly find sensitive data, evaluate their
Database Security posture, identify gaps, and implement the recommended security best practices for their
organization. DBSAT is also used all over the world by Oracle consultants and partners while executing Database
security assessments.

DBSAT has three components: collector, reporter, and discoverer. The collector and reporter are used for
generating database security risk assessments, and the discoverer to discover the different types of sensitive
data in the database.

The DBSAT Collector first gathers security configuration information from the database and underlying OS.
The DBSAT Reporter then analyzes the collected data and generates detailed findings and recommendations.
The output reports are in HTML, spreadsheet, text, and JSON formats. The DBSAT Discoverer (described earlier
in Chapter 5) helps to identify sensitive data by looking into table metadata (comments and column names),
classifies, and summarizes the findings in HTML and spreadsheet reports.

The HTML reports provide detailed results of the assessment in a format that is easy to navigate. The
spreadsheet format provides a high-level summary of each finding so that you can add columns for your
tracking and prioritization purposes. A report in text format makes it convenient to copy portions of the
output for other usages. The JSON output is convenient for data aggregation and integration purposes.

Evaluating the security state of Oracle databases

DBSAT security assessment reports

| 106Securing the Oracle Database

Figure 10.1: Database Security Assessment Tool

Figure 10.2: Database Security Assessment report

Collector

SQL

10g, 11g, 12c, 18c, 19c, 21c

JSON

HTML

Spreadsheet

Text

Reporter Discoverer

DBSAT

| 107Securing the Oracle Database

The resulting analysis is reported in units called Findings and consists of the following:

• Status: This indicates the level of risk associated with the finding (Pass, Low Risk, Medium Risk, High Risk)
or indicates that the finding is an Advisory for improvement such as information about an optional security
feature that is currently not in use. In cases where further analysis is needed, the status is shown
as “Evaluate.”

• Summary: Presents a summary of the finding.

• Details: Presents the details of the results, followed by recommendations.

• Remarks: Explains the reason for the rule and recommended actions for remediation.

• References: When applicable it will reference the corresponding CIS Oracle Database benchmark
recommendation, Oracle Database STIG Rule, and the EU GDPR article/recital.

In the Finding below, DBSAT has identified that there are five users with the DBA role and that further analysis
is needed (Status = Evaluate). The Remarks provide more information on why it is important to limit the usage
of this role to a small number of trusted administrators. References flag this Finding as CIS Oracle Database 12c
Benchmark recommendation 4.4.4.

Figure 10.3: Sample finding: Users with DBA role

| 108Securing the Oracle Database

The Discoverer component of DBSAT helps identify tables and columns with sensitive data, along with the
number of rows of sensitive data. To learn more about discovering sensitive data with DBSAT, please refer to
“Discovering Sensitive Data”, Chapter 5.

Customers can use Oracle Data Safe cloud service to assess the security of their databases running on Cloud
and on-premises. Data Safe is a database security cloud service that provides a comprehensive suite of security
capabilities, including user and security assessments. Tightly integrated assessment capabilities provide the
ability to simultaneously run assessments on multiple databases, schedule assessments, establish a security
baseline, and get a comparison report that highlights the drift between that baseline and the current database
security assessment.

See Chapter 13 for more information on how Oracle Data Safe can help meet data security requirements
including user and security assessments.

While DBSAT collects configuration information and identifies gaps along with recommendations, Oracle also
provides the Enterprise Manager Database Lifecycle Management (DBLM) to address your enterprise needs for
assessing security configuration. DBLM helps database, system and application administrators automate the
processes required to manage the Oracle Database lifecycle processes. DBLM provides numerous reports for
security configuration checks as well as a comprehensive compliance framework. Reports include information
on initialization parameters, operating system directory permissions, user account profiles, and sensitive
object reports.

Customers can customize the compliance framework either by adapting existing standards and rules or by
creating new ones. DBLM also ships with a DISA Security Technical Implementation Guide (STIG) compliance
standard that includes rules to validate STIG requirements.

Discovering sensitive data with DBSAT

Database security assessment using Oracle Data Safe

Enterprise level monitoring and assessment

| 109Securing the Oracle Database

Oracle Enterprise Manager DBLM ships over four dozen out-of-the-box compliance standards, including basic
security configuration for Oracle Database, RAC nodes, and Oracle Listener. It also monitors configuration
for Exadata Compute nodes and Security Linux packages. In addition, the trend analysis allows fine-grained
tracking of compliance scores over time.

Figure 10.4: Oracle Enterprise Manager general security reports

| 110Securing the Oracle Database

Figure 10.6: Descriptions of compliance frameworks, standards, and rules

Compliance
Framework

A compliance framework is an industry-specified best- practices guideline that deals with
the underlying IT infrastructure, applications, and processes. e.g. PCI

Compliance
Standard

A compliance standard is a collection of checks or rules for a specific target type. They
represent best practices and help maintain consistency across systems

Compliance
Standard Rule

A compliance standard rule is a test to determine a specific configuration parameter or
real-time status

Figure 10.5: STIG compliance standard detail

DBLM provides an extensible framework that supports compliance frameworks, standards, and rules. This
extensibility enables organizations to adapt to the ever-changing world of compliance and also create custom
configuration scans to test systems against internal best practices (see table on next page for details).

Compliance frameworks, standards, and rules

| 111Securing the Oracle Database

The Enterprise Manager DBLM Pack eliminates the need to manually track IT assets including databases. It
provides non-intrusive network scanning capabilities to discover servers, databases, and other applications.
With the ever-growing number of systems and services that administrators are responsible for, administrators
need a view that includes only those targets they need to monitor and manage.

Through such “Groups”, you can monitor and manage different targets collectively, easily perform
administrative operations against the targets, and consolidate and monitor your distributed targets as one
logical entity. For example, you can define a group called TEST that contains all applications, databases, and
host targets within your test environment.

From a group’s home page, an administrator can:

• Quickly determine the overall security configuration compliance of all the members in the group and
outstanding alerts,

• Drill down and analyze the specifics of a particular target,

• Compare multiple targets and find out configuration divergence. For example, it could find out which
database has not turned on auditing.

Oracle DBLM Pack enables real-time monitoring to monitor any action that can happen against a file (log,
configuration, binary), a database object, or a Microsoft Windows Registry key. The real-time aspect of this
monitoring means that it captures the action as it happens.

Results from real-time monitoring can be reconciled with a Change Management system to determine if an
action was authorized or not.

Enterprise Manager can be configured to send an email and notify in the event of a configuration change.
Notifications can perform actions such as executing operating system commands (including scripts) and PL/
SQL procedures allowing you to automate IT practices. Enterprise Manager can also send SNMP messages for
events published in Oracle Enterprise Manager, such as when a certain metric has exceeded a threshold.

Asset discovery and grouping

Real-time monitoring

Security patch management

Every quarter Oracle routinely provides fixes in databases for functional, performance, or security issues
discovered by internal testing, or reported by customers and external researchers. The security fixes can cover
a wide range of issues including

• Vulnerable SQL statements, buffer overflows, SQL injections, etc.

• Vulnerable database clients, JDBC drivers, etc.

• Weaknesses in cryptography, networking, remote code execution, etc.

| 112Securing the Oracle Database

Patching requires planning as the process is complex, and might lead to downtime. The EM DBLM supports the
entire Patch Management Lifecycle including patch advisories, pre-deployment analysis, rollout, and reporting.
It is integrated with My Oracle Support to provide a synchronized view of available and recommended patches.

Patch deployements through database lifecycle
management

When any vulnerability is found, fix involves evaluating the full data flow, constraints, and the flexibility inside
the database so that the problem is fully fixed without breaking the applications. Some customers try temporary
measures such as blocking a vulnerable SQL statement, but such measures are very easy to bypass, and cover a
very small percentage of the documented fixes.

The timely application of patches from Oracle is necessary for organizations to maintain a proper
security posture.

To give customers choice and flexibility, Oracle provides Release Updates (RU) and Release Update
Revisions (RUR).

• RUs are proactive, tested bundles of critical fixes that enable customers to avoid known issues. RUs are
cumulative, released quarterly, and contain security, optimizer, functional, and regression fixes.

• RURs are typically released every quarter after the RU release, and include the contents of a specific RU
and fixes for newly identified security vulnerabilities and regressions that affect a lot of customers. RURs are
specific to a particular RU train a Oracle’s goal is to release two RURs on top of one RU at the same schedule
as RUs. Please note that if some critical issue is found, Oracle may release an RUR earlier or even release a
third RUR on top of an RU.

At the time of the first RUR release (after 3 months), customers can either progressively step forward by
applying RUs, or pause with new optimizer and functional fixes for up to 6 months patch period by applying
RURs and still get security fixes.

Oracle strongly recommends that customers apply RUs and RURs as needed every quarter.

For older releases (before 12.2), apply Patch Set Updates (PSU) or Bundle Patches (BP):

• PSUs contain a cumulative collection of fixes for proven high impact bugs encountered in the field plus
the security fixes that are released as part of the Critical Patch update program.

• BPs includes everything that is in the PSU plus optimizer and functional fixes. They are also delivered
on a pre-defined schedule and are cumulative.

Oracle strongly recommends keeping your database up to date to fix known security vulnerabilities and
minimize the risk of a successful attack.

| 113Securing the Oracle Database

Knowing where sensitive data is, and how securely is the database configured is the foundation for a defense-
in-depth strategy. Configuration drifts need to be monitored, the database needs to be patched, and finally,
appropriate controls need to be put into place. No system is 100% secure but overlooking the basics will only
make life easier for attackers.

Oracle Database Security Assessment Tool, Oracle Data Safe, and Oracle Database Lifecycle Management pack
provide the tools to help you identify areas where your database configuration, operation, or implementation
introduces risk.

Summary

 | 114Securing the Oracle Database

EU GDPR and
database security11

| 115

Executives tend to be concerned about database security for two main reasons: First, they need to minimize the
risk of experiencing a data breach, and second, they need to comply with the requirements of national/state
laws, industry regulations, and contractual agreements. Privacy laws regulate the collection, storage, sharing,
control, and use of personal information about individuals, also called personal data or Personally Identifiable
Information (PII).

Organizations must consider a host of laws that may apply to their activities such as the European Union’s
General Data Protection Regulation (EU GDPR), the California Consumer Privacy Act (CCPA), industry regulations
such as the Payment Card Industry Council’s Data Security Standard (PCI-DSS), services contracts stipulating
ISO 27001 compliance, or Defense Information Security Agency (DISA) Secure Technical Implementation Guide
(STIG) standards.

Globally, more than 130 different governments have enacted privacy legislation and many more have pending
bills or initiatives. There are hundreds of data privacy regulations in the United States alone, at both the state
and federal level, with 29 new state data privacy laws in US from July 2019 to July 2020.

Since the last edition of this book, we’ve seen the California Consumer Privacy Act (CCPA) kick off with dozens of
lawsuits filed just within the first few months. EU GDPR is now widely enforced, with significant fines of hundreds
of millions of Euros already levied.

Because EU GDPR is one of the most comprehensive privacy laws, it is of interest to many organizations.
Several countries model their data privacy laws on the EU GDPR framework. For example, the California
Consumer Privacy Act (CCPA) contains many of the same provisions and protections of EU GDPR. Brazil’s Lei
Geral de Proteção de Dados (LGPD) and Thailand’s Personal Data Protection Act (PDPA) also closely follow EU
GDPR and are similar in terms of scope and financial penalties. The details amongst regulations may vary, but
all data privacy regulations essentially attempt to safeguard people’s personal information by regulating security
practices protecting that data.

There are numerous books, white papers, or other material such as this book that can help you get an overview
of such regulations, but none of them should take the place of competent legal advice. You should always
consult with your corporate legal counsel to understand the applicability of any law or regulation, and the
relevance of security controls to your specific environment. Note that the security controls and practices
discussed in this book are important even in the absence of regulations–there are good reasons to reduce
security risk and protect data.

 | 116Securing the Oracle Database

Before EU GDPR, each of the European Union countries had their own internal national Data Protection laws.
Understanding the dozens of different laws and complying with their sometimes-conflicting requirements
was a significant impediment to doing business in the EU.

EU GDPR provides a single common privacy framework for safeguarding EU residents from misuse of their
data. This common privacy framework reduces the cost of compliance and simplifies the process of dealing
with personal information for businesses serving residents of the European Union. EU-GDPR is applicable to
all companies and organizations, in all industries, whether the company is in Europe or outside of Europe, so
long as the company collects, processes, or maintains data about an individual in the EU, including through the
use of online tracking tools or when offering goods or services to individuals in the EU. Under EU GDPR, the
protection of personal data is a basic human right. Put another way, under EU GDPR, the Data Subjects own
their personal data, and if you are storing their data you are responsible for protecting it.

EU GDPR has 99 articles and 173 recitals. The Article 29 Working Party, the EU’s main privacy watchdog, has also
provided numerous documents to advise and clarify EU GDPR requirements. EU GDPR was passed in April 2016
and became effective on 25 May 2018. On that date, the Article 29 Working Party was replaced by the European
Data Protection Board (EDPB). The EDPB is an independent body, which aims to contribute to the consistent
application of data protection rules throughout the European Union, and promotes cooperation between the
EU’s data protection authorities.

Under EU GDPR, there are several roles involved:

• Data Subject: The individual whose data is being collected.

• Data Controller: The legal entity, public authority, agency, company or any other body that determines the
purposes and means of processing personal data.

• Data Processor: The legal entity, public authority, agency, company or any other body that may collect,
store, maintain or otherwise process data about the Data Subject on behalf of the Data Controller. They are
responsible for safeguarding a subject’s data and for ensuring that data is used only with the consent of the
subject. In many cases, the Data Controller and Data Processor will be the same entity.

• Data Protection Officer (DPO): Monitors compliance with EU GDPR. DPO keeps management informed
about their responsibility under the law. The DPO is also responsible for monitoring, and overseeing
notification and communication about personal data breaches with Supervisory Authority.

• Third Party: A person or organization who, under the direct authority of the Data Controller or processor,
is authorized to access or process personal data.

• Supervisory Authority, sometimes referred to as the Data Protection Authority (DPA): Responsible for
enforcing EU GDPR. They also provide guidance on the interpretation of that law. Each country will have
its own supervisory authority.

To understand the various actors and their roles, as well as how they relate to each other, consider a
hypothetical company based in France selling good through the company’s web store.

Introduction to EU GDPR

| 117Securing the Oracle Database

As part of its multi-national business model, the company stores and processes personal information about
individuals (Data Subjects). This EU-based company determines the purposes and the means of processing
personal data, and is therefore considered to be a Data Controller. The development, testing, customer care,
and billing are outsourced to external subcontractors in Brazil and India–these are Data Processors. The
company is responsible to the French Supervisory Authority for ensuring that data is appropriately protected.
Fraud analytics is contracted to a company in the United States-this is a Third Party. The company’s Data
Protection Officer is the liaison between the Supervisory Authority and the company.

Let’s consider another example. In this case the hypothetical company is based in the United States and sells
goods and services globally including to residents within the European Union. As part of its business, the
US-based company stores profile information about its customers that includes name, email address, phone
number, physical address, and product preference data like preferred clothing sizes. In this example, the US-
based company is the Data Controller and, even though it is based outside of the European Union, it is still
subject to EU GDPR.

Figure 11.1: EU GDPR roles

AuthorityController

Third party

Processor Processor

Data subjects

| 118Securing the Oracle Database

Article 5 of EU GDPR outlines fundamental principles for data protection. These principals require that personal
data be processed in a manner that ensures appropriate security of the personal data, including protection
against unauthorized or unlawful processing and against accidental loss, destruction, or damage, using
appropriate technical or organizational measures. This principle is reinforced in EU GDPR article 25—“Data
Protection by design and default”—which adds “implement appropriate technical and organizational measures”
and to “integrate the necessary safeguards into the processing in order to meet the requirements of this
Regulation.” As custodians of personal data, organizations have a legal obligation to protect the personal data
they store.

EU GDPR does not go into specifics on exactly what those technical measures and safeguards are–it is left for
each organization to determine how to guarantee the confidentiality, integrity, availability, and resiliency of data
and systems. Following a well-known and documented security architecture is an effective way to start when
working with any regulation.

EU GDPR applies to all data processing and storage systems. Given the amount of personal data that tends to
reside in databases, comprehensively protecting databases becomes a key part of compliance with EU GDPR
and similar data privacy regulations. For applying that protection to an Oracle database, an organization will
usually follow the blueprint already seen in the preceding chapters:

• Assess the risks involved with collecting, processing, and storing personal data including discovering and
documenting where sensitive data is stored and how it is processed (Chapters 5 and 10).

• Protect against access to data from outside of the database with encryption (Chapter 4).

• Control access to data to prevent unauthorized use, and inappropriate disclosure including enforcing
separation of duties to limit access to data (Chapters 2, 3, and 9).

• Monitor access to data to detect potential data breaches (Chapters 7 and 8).

• Minimize the personal data you must protect, especially in non-production systems (Chapter 6).

EU GDPR article 35 along with recitals 84, and 90–95 require the Data Controller to conduct a Data Protection
Impact Assessment (DPIA) to evaluate the origin, nature, particularity, and severity of risk. The assessment
is then used to determine appropriate measures to safeguard personal data and to mitigate the risks. From
database perspective, the assessment should include:

• Discover sensitive data—organizations need to understand where sensitive data is located and how it is
being processed. Article 30 requires a data inventory as part of an organization’s duty to maintain records of
processing activities. Data Safe, DBSAT Discovery and Enterprise Manager Application Data Modeling can
help with this—remember, Enterprise Manager’s Sensitive Data Discovery is included with ALL
database security products and options.

Fundamental principles of EU GDPR and databases

Assess your risk

| 119Securing the Oracle Database

Organizations must decide how to control access to data and how those controls should be configured to meet
Article 25 obligations to protect data by default and by design. A few rules of thumb are:

• Separate database administration from data administration—use Oracle Database Vault realms as discussed
in Chapter 3.

• Lock down application accounts so they can only be used by the application—use Oracle Database Vault
command rules to prevent misuse of the application credentials.

For Oracle databases, data should be encrypted so that someone can’t go around access control mechanisms to
view data directly. Examples of “going-around” might include somehow getting access to the tablespace files,
and then using a strings command to view data in a data file or redo log. It might also include using tcpdump to
print out network traffic to/from the database. Encryption renders such attacks useless and forces attackers to
use database commands to access data—at which point controls like authentication, authorization, and audit
come into play.

While EU GDPR is technology-neutral and does not mandate specific security controls, encryption is called out
as an example of an appropriate measure to mitigate risk (Recital 83), an appropriate safeguard (Article 6.4), a
method of helping to ensure the security of processing (Article 31.1), and a mitigating factor that can relieve the
Data Controller of the requirement to notify a Data Subject in the event of a personal data breach (Article 34.3).
This is one of the core reasons why Transparent Database Encryption (TDE) is so prevalent for Oracle databases.
TDE ensures that there is no data loss if there is any unauthorized access to the data through the storage
layer, including copies (e.g.: backups or exports) of the database. Database encryption is now such a common
requirement that all database services in Oracle Cloud are encrypted by default.

Encryption always comes with the additional responsibility to store and manage encryption keys. A common
best practice is to separate the keys and the encrypted data, otherwise access to both of them would allow
the hackers to decrypt this data. As discussed in Chapter 4, the encryption keys should be protected with
Oracle Key Vault.

Control access to data

Protect against database bypass

• Validate database configuration—systems should be configured in accordance with an organization’s
own standards, usually those will be based on a widely documented and accepted standard. The Database
Security Assessment Tool (DBSAT) or Data Safe can help with this. Refer to Chapter 10 for more information
on assessing database configuration.

• Document risks and the measures used to mitigate those risks —the findings and remediation
recommendations from DBSAT or Data Safe can be made a part of the DPIA report.

| 120Securing the Oracle Database

Article 33 requires that the Supervisory Authority be notified within 72 hours of a personal data breach. Article
34 requires that Data Subjects be notified about a personal data breach if the breach “is likely to result in a high
risk to the rights and freedoms of natural persons.”

These notification requirements mean that auditing and monitoring database activity to detect inappropriate
access is critical. The organizations should be able to tell who accessed personal data, when the access
occurred, and where the access came from. As discussed in Chapters 7 and 8, this will typically require both
auditing of high-risk operations and monitoring of database activity to identify anomalies using Oracle Audit
Vault and Database Firewall. We will discuss another option for monitoring database activity in Chapter 13,
Keeping Data Safe.

One of the best ways to reduce the EU GDPR compliance burden is to not collect and store more personal data
than is absolutely required. As with encryption and pseudonymization, minimization is identified several times
(Articles 25.1, 47.1, and 89.1) as a component of data protection by design and default. Data minimization means:
first, collect as little data about the data subjects as needed to run the business, and second, remove that data
once it is no longer needed.

Monitor access to data

Minimize personal data

• Strengthen database authentication to reduce the likelihood of compromised credentials. This might
be through the use of Kerberos, PKI, or Centrally Managed Users. At an absolute minimum, use strong
password policies along with failed login lockouts and unsuccessful login auditing/alerting.

• Periodically review role and privilege grants to identify over-privileged users. As privileges tend to
accumulate over time, you should periodically review privilege grants and remove those that are no longer
needed. Use Oracle Database’s Privilege Analysis to identify unused grants.

The main body of EU GDPR makes several references to pseudonymization. Article 4.5 defines
pseudonymization as “the processing of personal data in such a manner that the personal data can no
longer be attributed to a specific data subject without the use of additional information, provided that such
additional information is kept separately and is subject to technical and organizational measures to ensure
that the personal data are not attributed to an identified or identifiable natural person.” In Articles 6.4 and 32.1,
pseudonymization is identified along with encryption as an appropriate safeguard for personal data. In Article
25.1, pseudonymization is identified as an appropriate technical measure that can help demonstrate
data protection by design.

Pseudonymization in production systems is usually a function of access control for the identifying attributes
such as taxpayer id, account number, and email address. Data redaction, real application security, or virtual
private database could be used for controlling access to the identifying attributes.

| 121Securing the Oracle Database

In certain cases, data subjects may have the right to request an organization to stop processing their data. In
such cases, the organization needs to block individual records from continued processing.

Depending on the application and schema design, use of Oracle Label Security may be appropriate. As
discussed in Chapter 9, Label Security can be used to attach security related metadata to individual rows of
data. That metadata can take the form of levels, security groups, or compartments. Using Label Security access
control mechanism, one can allow or deny access to a record based upon the row and user labels. Data rows
that are available for processing might be assigned a low security level. When processing of certain rows needs
to be restricted, assigning them a high security level means that a process can’t interact with them unless that
process is operating under an even higher permission level.

For data controllers that collect personal data with consent, they also need to manage, collect, store, and
enforce such consent. Oracle Label Security may be able to help here also by recording membership in security
groups. Sales and marketing might be one group, while product support might be a different group. When a
data subject consents to different processes, it could be recorded as different groups in the data subject’s row
label. A process would not be able to interact with the data subject’s row if the process were not a member of
one or more of the groups attached to the row.

Database data processing restrictions

Consent management

For non-production systems, organizations can consider permanently masking identifying attributes using
Oracle Data Masking as discussed in Chapter 6 or using Oracle Data Safe as discussed in Chapter 13.

Data subsetting also helps minimize the volume of personal data by creating smaller test environments with
a lower volume of personal data. Data Subsetting is a very useful way to limit how much data the organization
keeps on production servers and even in archives.

| 122Securing the Oracle Database

Vipin Samar, Senior Vice President of Database Security for Oracle, says “Data is today’s capital, but in
the wrong hands, data becomes the new liability.” We must minimize the risk of retaining that data in
order to maximize opportunity provided by the data. Throughout this chapter we have discussed how the
comprehensive set of tools and technologies from Oracle can significantly enhance your readiness to meet
compliance requirements for EU GDPR and other regulations.

Remember, databases are core assets that may store significant amounts of personal data. Protecting this data
is central to all privacy legislation, and using a comprehensive set of security controls is one of your best aids in
meeting regulatory requirements.

Summary

 | 123Securing the Oracle Database

Securing databases
in the cloud12

| 124

On-premises and cloud deployments are quite different, but from a security threat perspective many risks look
the same. Both are concerned about network/OS infiltration, exploitation of configuration vulnerabilities including
unpatched systems, compromised users, and vulnerable applications, however the infrastructure and administra-
tive risks are quite different. On-premises systems benefit from known, trusted administrators and an inherently
restricted threat environment as they operate inside the organization’s firewall where they are protected, and ac-
cess is limited. In comparison, cloud services benefit from dedicated security administrators, binding service level
agreements, and an increased focus on process.

Cloud databases may be exposed to different threat vectors than those running on-premises. For example,
attackers might attempt to reach the database through direct attack on the cloud provider’s network, or through
the networks of other customers. You also must trust the cloud administrators and depend upon their security
policies. While database security is different for on-premises and cloud deployments, the broad industry consensus
is that the cloud’s security advantages outweigh the disadvantages.

This chapter describes how these differences change the security responsibilities for the consumer, and how they
should secure their cloud databases.

Some threats to your database in the cloud mirror the threats faced on-premises and cloud databases can be
protected using similar controls:

• Encrypt data at rest and in motion to limit the attack surface on databases.

• Control what database users can do through proper privilege and role management, including Oracle
Database Vault, Data Redaction, Label Security, and Real Application Security.

• Identify and mitigate any security configuration gaps with Oracle Data Safe.

• Monitor database activity to detect anomalies and block malicious activity with Oracle Data Safe.

• Minimize the proliferation of sensitive data in test and development with Oracle Data Masking and
Subsetting or Oracle Data Safe.

Some threats remain the same

 | 125Securing the Oracle Database

Some threats faced in the cloud are different, including difference in scope and emphasis. Let’s look at a few of
these differences.

Service provider access

One thing that makes the cloud threat environment different is the differing trust level for the operating team.
For on-premises, the organization knows their employees and contractors, and they can check employee
backgrounds, even if it is just a credit check. Further, their physical controls supplement IT access controls,
and an external attacker must first penetrate the internal network before attacking the database.

For cloud, organizations generally have no knowledge of who the cloud service providers’ employees are, and
have no ability to check their backgrounds. However, cloud being the business of cloud vendors, all reputable
cloud vendors do deeper background checks, invest in controls to detect and prevent unwanted intrusions, and
have fully-staffed security operations centers that monitor operations around the clock. They also have strong
operational and separation-of-duty controls designed to minimize administrator access to user data.

Shared infrastructure

Another difference in the cloud is the use of shared resources. For on-premises, all resources including servers,
networks, compute, and storage are deployed to support the company’s goals. This dedicated infrastructure
limits perceived risk because all applications belong to the same organization, operate within its boundaries,
and follow its access policies to create a trusted zone. In attack scenarios, a server can be physically
disconnected from the network or powered down while the situation is evaluated and remediated.

In the cloud, you can remove logical access to a service or de-provision it—but you have no physical access to
power down a server or unplug the network cable. Customers should examine the cloud provider’s architecture
to identify how systems are isolated from one another, and what the process is to isolate and disconnect a
system during an emergency.

In the cloud, resources are provisioned and de-provisioned as needed. A server and storage area that was
used by one company yesterday may be used by another company today. There are justifiable concerns about
remnants of data from yesterday’s company being visible to today’s consumer of the same storage, and still
another consumer tomorrow. Depending on the level of access they have, the new user of hardware once
dedicated to your organization may be able to forensically recover data fragments that contain your sensitive
data. This makes encryption even more important in the cloud than on-premises. At Oracle, we encrypt
databases in our cloud by default–we don’t want to assume the risk of storing our customers’
data in unencrypted form even if the customers themselves might be willing to assume that risk.

And just as with on-premises, encryption in the cloud is only as good as the security of the keys used to encrypt
/decrypt the data. Oracle Cloud Infrastructure Vault allows users to centrally manage and maintain control of
the encryption keys that protect enterprise data and the secret credentials used to securely access resources.

Threats unique to the cloud

| 126Securing the Oracle Database

However, some customers require that encryption keys for cloud-based systems be retained outside of the
cloud service provider’s environment. An on-premises deployment of Oracle Key Vault satisfies this need. In
case of a loss of confidence in the security of a database in the cloud, you may simply suspend access to that
database’s master encryption key stored in Oracle Key Vault. Once those pending concerns are resolved, you
can restore access to the key and the database is now ready for use again. The combination of on-premises
control (Key Vault) with cloud-based service (database) is a hybrid cloud security model, giving you best of
both worlds.

Anomaly detection and activity monitoring

In the cloud, auditing and monitoring is even more important than on-premises. With unknown administrators
managing your infrastructure, it is only common sense that you monitor their activity. You can do this
through Oracle Data Safe (recommended), or you could implement a hybrid cloud control with an on-premises
monitoring system (for example, Oracle Audit Vault and Database Firewall) to monitor databases in the cloud.
Oracle Audit Vault and Database Firewall in this mode could provide local monitoring of both on-premises
and cloud resources.

Configuration management

Most organizations have configuration standards for hardware, operating systems, and databases. When a new
database server is installed, those standards are followed, and the system can then move to production knowing
that it is secured according to established risk acceptance.

With cloud, the service provider’s configuration standards are followed, and they may or may not match
perfectly with your on-premises standard. If a complete application stack is being deployed, the cloud provider
is trusted to configure systems appropriately, and the service consumer usually does not have visibility into their
standards or the ability to change them.

Although organizations almost always have standards for configuration, patching, and operations, the actual
situation on the ground is usually quite alarming. Security assessments of on-premises databases find default
passwords in use, systems that have not been patched in years, and configuration settings exposing the system
to high levels of risk. The reality is that most IT organizations simply don’t have the time to do everything well,
and the limited DBA staff is heavily focused on availability and performance, with very little time left over for
security. The average security staff has no background in database administration, and just hopes that the DBAs
are doing everything right.

Cloud service consumers must understand how their database is configured in the cloud. Consider using the
Security Assessment feature in Oracle Data Safe to scan the database configuration and identify any gaps that
could represent a vulnerability. Data Safe delivers actionable reports so you can start mitigating these risks
immediately.

| 127Securing the Oracle Database

In the cloud, consumers gain from economies of scale when it comes to security. The major cloud providers
have dedicated security staff with database expertise. They have SLAs around configuration, patching, and
management. Most cloud providers operate on a shared responsibility model, where the cloud provider’s duties
are clearly outlined.

Knowing where the cloud provider’s responsibility stops and the consumer’s responsibility begins, is one of the
first things to establish before creating the security action plan.

There are several things that cloud providers can do to make the job easier—for example, Oracle encrypts
databases in its cloud by default, provides Oracle Data Safe, and includes security options like Oracle Database
Vault, Label Security, and Data Redaction for the Oracle Database Cloud Service High and Extreme Performance
editions, or with Oracle Autonomous Databases. This means consumers of those services get the advantage of
the capabilities discussed in earlier chapters.

Security in the cloud imposes a shared responsibility model, with some tasks being the responsibility of the
service provider, and others of the service consumer. The more access the service consumer has, the more
security responsibility they need to assume. For on-premises, all responsibility falls upon the service consumer.

Security in the cloud is usually better

Shared responsibility

Figure 12.1: Shared responsibility model for PaaS

User Access/Identity

Data

Application

Database

Guest OS

Virtualization

Network

Host Infrastructure

Physical

Your responsibility

Service provider’s
resposibility

| 128Securing the Oracle Database

Infrastructure as a Service (IaaS) gives consumers access to the system at the operating system level, meaning
the consumer assumes responsibility for everything above and including the OS. Conversely, Software as a
Service (SaaS) usually only allows the consumer to access the application’s user interface or published APIs.
Everything below that interface is the responsibility of the service provider and the service consumer is only
responsible for the data they place into the service and the users they allow access to that data. Platform as a
Service (PaaS) falls in-between IaaS and SaaS, with the service provider having responsibility further up the
stack than with IaaS, but not as far as with SaaS.

Database as a Service (DBaaS) is an example of PaaS where the consumer has access at the database
level and assumes responsibility for the database and higher in the stack. However, even within DBaaS
offerings, the dividing line may vary. For example, Oracle’s Autonomous Database shifts more of the security
responsibility onto Oracle, bringing the Autonomous Database closer to the SaaS model. Responsibility for
the database is split, with the majority of the responsibility (including application of security patches) lying
with the provider, and a smaller part with the consumer. With Autonomous Database, the service consumer is
responsible for a limited amount of database configuration, but fully responsible for what data is added to the
system and the applications or user(s) who access that data.

Figure 12.2: Cloud service responsibility model

User Access/Identity

Data

Application

Database

Guest OS

Virtualization

Network

Host Infrastructure

Physical

Infrastructure as a service
Responsibility model

User Access/Identity

Data

Application

Database

Guest OS

Virtualization

Network

Host Infrastructure

Physical

Platform as a service
resposibility model

User Access/Identity

Data

Application

Database

Guest OS

Virtualization

Network

Host Infrastructure

Physical

Software as a service
resposibility model

Service consumer
responsibility

Service provider’s
resposibility

| 129Securing the Oracle Database

The common DBaaS shared responsibility model changes if the service platform moves into the consumer’s
physical data center. For example, Oracle offers Exadata Cloud-at-Customer, where the cloud infrastructure is
located inside the service consumer’s data center. In this case, the consumer assumes responsibility for physical
security of the system, most of the network and the infrastructure responsibility for power and HVAC, while the
service provider assumes responsibility for the rest of the host infrastructure, a small portion of the network
(internal to the cloud environment), and all of the virtualization and guest OS layers.

Why is all this talk of shared responsibility important? Because before adding security controls into your
cloud environment, you need to know what you are responsible for, and ensure your cloud provider clearly
understands what you expect them to be doing.

Figure 12.3: DBaaS shared responsibility model

User Access/Identity

Data

Application

Database

Guest OS

Virtualization

Network

Host Infrastructure

Physical

Common DBaaS
resposibility model

User Access/Identity

Data

Application

Database

Guest OS

Virtualization

Network

Host Infrastructure

Physical

Autonomous Database
resposibility model

User Access/Identity

Data

Application

Database

Guest OS

Virtualization

Network

Host Infrastructure

Physical

Cloud at Customer
resposibility model

Service consumer
responsibility

Service provider’s
resposibility

| 130Securing the Oracle Database

The database cloud services used determine how and when periodic security assessments should be performed
as part of the organization’s security responsibilities. You should include some validation to confirm that the
cloud service provider is also doing their part. Assessments may be procedural such as requesting third-party
validation reports (e.g.: SOC2, FedRAMP, EU GDPR, or other security reviews) or as tactical as periodically
reviewing exposed ports, patch levels, etc.

Now look at the remaining tasks–the ones not owned by the cloud provider. The capabilities and methodologies
outlined earlier in this book continue to protect the database in the cloud. Here are a few general-purpose
guidelines and how Oracle can help you with them:

• Encryption: DO NOT place unencrypted data in the cloud. This is a risk your organization should NOT take.
Oracle encrypts Oracle Cloud Databases running on the Oracle Cloud Infrastructure automatically.

• Data Minimization: DO NOT leave sensitive data in test and development systems. Understand the
sensitivity of the data in your database and anonymize that data using masking techniques, or use
completely artificial data sets that present no security risk. You can easily mask your data in test and
development systems (including substituting your data with artificial data sets) with Oracle Data Safe.

• Access Control: DO implement separation of duties. Plan as if the users have been compromised, and the
attacker will gain access to the environment hosting your data. If there are no security realms to protect
sensitive data, there is nothing to stop the attacker from stealing it. You can assess the risk level of your
database users with the User Assessment feature in Data Safe. In addition, you can use Database Vault to
further protect sensitive data.

• Activity Monitoring: DO create audit records for all critical activities and monitor the audit trail. Ensure the
organization or cloud provider’s audit facility creates alerts for unusual activities. You can review and enable
recommended audit policies in your database with Data Safe. Data Safe can then collect your audit records
and provide pre-defined audit reports to help you check for any suspicious activity.

So, what should we do?

| 131Securing the Oracle Database

Cloud database deployments can reduce costs, free up staff for more important work, and support a more agile
and responsive IT organization. But those benefits come with different risks, including an extended network
perimeter, expanded threat surface with an external administrative group, and shared infrastructure. Despite
that, with the right procedures in place, Oracle Cloud can provide better security than most organizations have
on-premises and do it at a fraction of the cost in time and manpower.

Summary

 | 132Securing the Oracle Database

Keeping
data safe13

| 133

The previous chapter, “Securing Databases in the Cloud,” introduced the shared responsibility model, which
describes how the job of protecting data and applications must be shared between the cloud service provider and
the cloud service consumer. We learned how Oracle Autonomous Cloud provides strong security as an integral
part of the service. These capabilities include network security and monitoring, OS, VM and container security
and patches, database security patches and upgrades, web application firewalls, as well as regulatory compliance
processes. We also learned how various layers of technology including data encryption, activity monitoring, and
administrative separation of duties are used to protect customer data from accidental or deliberate exposure to
cloud operators.

Regardless of how secure the platform is out-of-the-box, however, there are certain security activities that can
only be performed by the cloud customer. For example, customers are responsible for adding their database
users, managing those users’ privileges, and applying appropriate security controls to protect their data based
on how mission-critical or sensitive that data is. In some sense, this is no different from the responsibilities they
have for their on-premises databases. To secure their users and data, database administrators need to be able to
answer some fundamental questions:

• Is my database properly configured?

• Who are my risky users?

• What are my users doing?

• What sensitive data do I have in my system?

• How do I protect my sensitive data from exposure when used outside of the production environment?

We’ve seen in previous chapters how Oracle offers a variety of solutions for answering these important questions.
However, wouldn’t it be nice if these capabilities came pre-integrated in the cloud, with the ability to secure both
your cloud databases and your on-premises databases with an easy-to-use-interface?

 | 134Securing the Oracle Database

Figure 13.1: Oracle Data Safe provides essential security for Oracle databases, both in the cloud and on-premises

Data Safe’s database security assessment helps to identify configuration gaps that could represent a
vulnerability. It performs a comprehensive check of database configuration. It examines areas like user accounts,
privilege and role grants, authorization controls, fine-grained controls, auditing, encryption, and configuration
parameters. It identifies gaps compared to organizational best practices and delivers actionable reports, with
prioritized recommendations as well as mappings, to common compliance mandates like EU GDPR, DISA STIGs,
and CIS benchmarks.

The following snippets show a sample report of security assessment including a high-risk finding, and finding
that needs to be looked at further. The findings include not just what the problem is, but also its severity and
recommendations on how to remediate the problem.

Assessing security

On-premises DatabasesDatabases in the Cloud

AuditUsers DiscoverAssess Mask

Data Safe provides an integrated set of security features for databases enabling users to understand the
sensitivity of their data, evaluate risks to data, mask sensitive data, implement and monitor security controls,
assess user security, monitor user activity, and address data security compliance requirements. Data Safe is a
unified control center for managing database security, running in the Oracle Cloud.

Data Safe employs a simple “click-and-secure” model and is designed to be accessible to users with no special
security expertise required. Data Safe saves time with an intuitive interface that minimizes error and shortens
learning curves. It mitigates security risks by making various aspects of configuration, data, and user security
risks immediately visible to database administrators.

Enter Oracle Data Safe

| 135Securing the Oracle Database

Figure 13.2: Oracle Data Safe: Security assessment

| 136Securing the Oracle Database

Figure 13.3: Oracle Data Safe: User risk assessment

Understanding user risk

Data Safe includes a unique capability that allows security administrators to evaluate the risk represented by
various database users. The user risk assessment feature evaluates database users, looking at both static and
dynamic characteristics of the user’s profile, in order to identify the highest risk users.

User risk is presented graphically, allowing administrators to very quickly determine which users may be over
privileged or require compensating controls such as auditing. It helps you understand, for example, how many
users have not logged-in in the last 3 months or longer, or have not changed their passwords. If there is some
suspicion about activity by a user, it can help you understand all details about the user including when they
were created, their roles and privileges, and related audit records.

We’ve already seen how appropriating the credentials of a privileged user is the most common method
used by hackers to access sensitive data. By providing the ability to assess and visualize user risk, database
administrators can take the necessary steps to make their applications more secure.

| 137Securing the Oracle Database

Data Safe users can access interactive reports for user activity tracking or forensics, as well as summary
reports for routine collection and reporting. Finally, these reports can be downloaded as PDFs to help with
organizations’ compliance programs. Administrators can also select from a number of predefined alert policies
so they are immediately notified of unusual activities that may indicate compromise.

We’ve seen in previous chapters how database auditing is a critical control for database security and regulatory
compliance. Database user activity auditing facilitates a “trust but verify” approach to managing users and their
privileges. Data Safe’s user activity auditing feature allows administrators to select from a variety of predefined
audit policies and enable them on the database. Data Safe can then start collecting and storing audit records
obtained from the databases.

Auditing user activities

Figure 13.4: Oracle Data Safe: Audit policy provisioning

| 138Securing the Oracle Database

Figure 13.6: Oracle Data Safe: Sensitive data discovery

Figure 13.5: Oracle Data Safe: Predefined sensitive data types

The types of data contained within the database, and their sensitivity, helps determine what controls should
be used to protect that data. Data Safe includes a sensitive data discovery feature that allows security
administrators to quickly answer the critical questions of “What types of sensitive data do I have?”,
“Where is it stored?”, and “How much of it do I have?”

Data Safe discovers over 125 sensitive data types across categories including personally identifiable information,
financial information, health information, IT and job-related information, and education information. Data Safe
examines column names, comments, and data values to identify columns containing sensitive data. Data Safe
users can also extend these sensitive data types to include custom data types. Sensitive data discovery helps
users to understand the value of the data and enables them to prioritize their defenses.

Discovering sensitive data

Identi�cation

SSN
Name
Email
Phone
Passport
Tax ID
Driver License
…

Biographic

Age
Gender
Race
Citizenship
Address
Family Data
Date of Birth
Place of Birth
…

IT

IP Address
User ID
Password
Hostname
GPS location
…

Financial

Credit Card
Security PIN
Bank Name
Bank Account
IBAN
Swift Code
…

Healthcare

Provider
Insurance
Height
Blood Type
Disability
Pregnancy
Test Results
ICD Code
…

Employment

Employee ID
Job Title
Department
Hire Date
Salary
Stock
…

Academic

College Name
Grade
Student ID
Financial Aid
Admission Date
Graduation Date
A�endance
…

Chapter-5 graphic-1

| 139Securing the Oracle Database

In the earlier chapter on data masking, we learned how masking removes security risk from test and
development systems and helps minimize the amount of sensitive data stored. Data Safe’s data masking feature
provides the ability to quickly mask sensitive application data with a library of over 50 predefined masking
formats. Default masking formats are automatically suggested based on the type of sensitive data discovered
using the sensitive data discovery feature. Data Safe users can also add their own custom masking formats.
Data masking can be used to transform columns of sensitive information such as birth dates and credit card
numbers and can also support more complex data masking use cases such as conditional and compound
masking. The results of each masking run are summarized with an interactive masking report.

Masking sensitive data

Figure 13.7: Oracle Data Safe: Sensitive data masking

| 140Securing the Oracle Database

Figure 13.8: Oracle Data Safe: Security console

Data Safe includes a built-in dashboard that summarizes risk elements derived from user and security
assessments, sensitive data discovery, audit trails, and alerts. This dashboard provides a ‘single pane of glass’
overview that allows Data Safe users to visualize their configuration, user, and data risks, and identify open
issues requiring immediate attention. By clicking into the graphs and charts on the dashboard users can
drill down to view details by database or user, enabling them to identify opportunities to better secure their
application data.

Visualizing risk with the dashboard

| 141Securing the Oracle Database

Figure 13.9: Oracle Data Safe connectivity

Oracle Cloud

On-premises,

Cloud@Customer
Other Cloud Providers

/

Oracle Databases

On-Premises
Connector

Fast Connect /
VPN Connect

Data Safe

Even with a managed database service like Oracle Autonomous Database, users have considerable latitude
in how they configure their databases. Data Safe integrates seamlessly with Oracle Autonomous Databases,
allowing cloud administrators to register new databases with a single click. For Oracle Cloud Databases, Data
Safe supports a private endpoint feature which enables secure connectivity between the database and the
Data Safe service in the Oracle Cloud without the need to expose the database’s IP address publicly.

For customers who have network peering between the Oracle Cloud and their on-premises environment,
this same private endpoint feature can be used to securely connect on-premises databases to Data Safe
as well. This solution works whether the network connectivity uses a customer provided VPN solution or
Oracle Fast Connect.

Finally, customers can download a lightweight on-premises connector through the Data Safe console
and deploy it on a machine in their own network, or on a virtual machine in any other cloud network. The
connector acts as a network proxy, maintaining a secure, encrypted network path to the Data Safe service.
Each of these connectivity options is illustrated below.

Protecting databases on-premises and in the cloud

| 142Securing the Oracle Database

In the previous chapters, we’ve learned how the security technologies and capabilities built into the Oracle
Database enable Oracle Database customers to deploy and maintain a highly secure database environment,
whether their databases are running on-premises or in the cloud. With Oracle Data Safe, critical functionalities
for securing databases are instantly available through a simple click-and-secure interface. The most common
security tasks can be completed without requiring any deep security expertise. Data Safe helps all customers,
big or small, keep their data safe, whether they are on-premises or in any cloud.

Summary

 | 143Securing the Oracle Database

Conclusion: Putting it all together

If we guard our toothbrushes and diamonds
with equal zeal, we will lose fewer toothbrushes
and more diamonds.”
“ “
McGeorge Bundy
US National Security Advisor to President John F. Kennedy

We hope you have enjoyed this journey into Securing the Oracle Database and that it has provided you
with some insights into the variety of controls available for keeping your data secure. Indeed, with so many
technologies available for securing data with evaluative, preventive, detective, and data-driven security rings of
controls, you may be wondering how you would actually go about implementing these controls. What should be
the order? What should I do first? How much time will it take? How much risk am I reducing?

The best advice we can give is that you should plan to implement a set of security controls appropriate for the
sensitivity of the data, the criticality of the data to your business, and your threat environment. Let’s say that
you are able to assign different sensitivity levels to your data and systems ranging from bronze to silver, gold,
and platinum. Bronze systems might include internal portals, employee directories, and wikis. Silver systems
could include business transaction systems, supplier information, and parts catalogs. Gold systems might
include data subject to regulatory compliance, whether it be EU GDPR, CCPA, PII, PCI, HIPAA, or SOX. Platinum
systems could include highly sensitive and restricted data including quarterly sales numbers, sales forecasts,
M&A activities, and intellectual property such as source code.

One possible approach to protecting these systems is illustrated in the figure below. Bronze and above
databases should at minimum be securely configured and current with security patches. It is very easy for
hackers to break into an unpatched system and exploit it as a command and control base for further attacks
or a staging area for all the data they discovered. In addition, we certainly want to monitor and audit all the
activities done by the privileged users on this machine so that if any significant changes are being made, they
can be tracked.

| 144Securing the Oracle Database

For silver and above databases, data at minimum should be protected from unauthorized users. This means
protecting data so it is not visible as it travels over the network, can’t be viewed directly from the operating
system, and is not present in test and development machines. Make sure that privileged users are authenticated
with strong passwords or with PKI or Kerberos based authentication. The basic security controls used for silver
are encryption, masking, and strong authentication.

For gold and above databases, data should be protected from privileged users and from those users who do
not have a business need to access the data. We need to restrict privileged users while still enabling them to
perform their duties and monitor SQL activities over the network to quickly identify malicious attempts to
exploit application vulnerabilities. To address basic compliance requirements, we need to protect all PII, PCI,
PHI data.

Platinum databases should have all the security controls used for bronze, silver, and gold. In addition, platinum
databases should be locked down as they contain the largest number of sensitive critical assets. One needs to
control who can log on to the database machine, monitor every single operation in real time, ensure that SQL
injection attacks cannot succeed, and audit everything that happens on this machine so that in case of a breach,
you would be able to figure out what actually was lost, and how.

Depending upon the priorities and the security strategy of the company, deployment of these controls could
start from either edge of the spectrum. You might take a controls-based approach and start securing the
configuration of all your databases and then move on to the next function and encrypt all your databases,
and so on—implementing one control at a time across your environment. Or, you might take a systems based
approach and do a complete lock-down of individual systems one at a time, according to their level of risk. Both
approaches are valid, and in real life we usually see a combination of the two approaches.

Either way, you need to have a proper strategy in place which takes into consideration the overall business
objectives along with the people, resources, and time available. In this way, we can protect both “toothbrushes”
and “diamonds” with the appropriate level of security, getting maximum return for one’s security effort.

Bronze
Internal portals
employee directories

Silver
Internal transactions,
Service tickets

Gold
Regulatory compliance
PII, PCI, PHI, SOX

Platinum
Quarterly Sales, Sales forecast,
M&A, IP, Source code

Secure con�guration

Secure data

�Secure access

Lock-it-down

Scan and patch
Check con�guration
Audit sensitive
activities

Strong authentication

Mask and Subset

Restrict DBA access

Redact application
data

Monitor SQL tra�c

Control DB operations

Block unauthorized SQL

Audit comprehensively

| 145Securing the Oracle Database

For further reading
The topic of database security is broad, and there is a good deal of material available if you’d like to learn
more. Here are links to a few resources you may want to review:

Oracle Database security homepage: This is where we post the latest product data sheets, white papers, demo
viewlets, and more.

https://www.oracle.com/security/database-security/

Database documentation: This link takes you to the latest database product manuals. Just select your
database version from the drop-down list and click Security to see the security related documentation.

https://docs.oracle.com/en/database/oracle/oracle-database/index.html

Oracle Data Safe—Get started: Learn about Oracle Data Safe, view links to descriptions of common tasks, and
access video tutorials.

https://docs.oracle.com/en/cloud/paas/data-safe/

Oracle Critical Patch Updates, Security Alerts, and Bulletins: This page lists announcements of security fixes
made during critical patch updates. You’ll also find security alerts and bulletins.

https://www.oracle.com/security-alerts/

Oracle Database Security blog: Articles on topics of interest to the database security community.

https://blogs.oracle.com/cloudsecurity/db-sec

Oracle Corporate Security blog: Information on new critical patches and alerts from our software
assurance team.

https://blogs.oracle.com/security/

AskTOM monthly community calls: We hold a community call the second week of most months, where
we’ll update you on the latest product announcements and provide a deep dive into a technical topic. You can
register to be notified of new sessions and the topics. We record these sessions, and you’ll find the recordings
listed on this site: https://bit.ly/asktomdbsec

| 146Securing the Oracle Database

Copyright © 2021, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change
without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in
law, including implied warranties and conditions of merchant- ability or fitness for a particular purpose. We specifically disclaim any liability with respect
to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Oracle Corporation

Worldwide Headquarters
500 Oracle Parkway, Redwood Shores, CA 94065, USA

Worldwide Inquiries
Tele + 1.650.506.7000 + 1.800.ORACLE1
Fax + 1.650.506.7200

oracle.com

Connect with us

 facebook.com/oracle

 youtube.com/oracle

 linkedin.com/company/oracle

 twitter.com/oracle

http://facebook.com/oracle
https://youtube.com/oracle
http://linkedin.com/company/oracle
http://twitter.com/oracle

	Home
	Table of contents
	Foreword
	Acknowledgements
	Chapter 1: Protecting data
	Chapter 2: Database authentication and authorization
	Chapter 3: Enforcing separation of duties
	Chapter 4: Data encryption and key management
	Chapter 5: Discovering sensitive data
	Chapter 6: Masking sensitive data
	Chapter 7: Database auditing and activity monitoring
	Chapter 8: Network-based SQL monitoring
	Chapter 9: Data-driven application authorization
	Chapter 10: Need for security assessment
	Chapter 11: EU GDPR and database security
	Chapter 12: Securing databases in the cloud
	Chapter 13: Keeping data safe
	Conclusion: Putting it all together
	For further reading

